
Understanding the Modern Internet’s
Heterogeneous Congestion Control Landscape

Ayush Mishra

National University of Singapore
2024

Understanding the Modern Internet’s
Heterogeneous Congestion Control Landscape

Ayush Mishra
(B.Tech., NIT Trichy)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2024

Supervisor:
Associate Professor Ben Leong Wing Lup

Examiners:
Professor Chan Mun Choon
Professor Tay Yong Chiang

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its

entirety. I have duly acknowledged all sources of information which have been used in the

thesis.

This thesis has not been submitted for any degree in any university previously.

—————————–

Ayush Mishra
September 7, 2024

"All I know is that I know nothing."

-Socrates

(about Internet Congestion Control, probably)

Acknowledgements

This thesis would not have been possible without the kind support of many people. I am grateful to my

advisor, Ben Leong. I have the deepest gratitude for his patience and guidance during my PhD. Ben

has been a philosophical compass who has always placed special emphasis on applying first principles

thinking to not just research, but also life in general. Perhaps the greatest lesson I’ve learned from him

is how much can be achieved by asking his two favorite questions: Why? and Why not? Our whiteboard

brainstorming sessions, which were invariably interspersed with anecdotes and life lessons, will remain

the most cherished part of my PhD. I am also thankful to my thesis committee, Prof Chan Mun Choon

and Prof Tay Yong Chiang for their invaluable feedback and comments on my thesis.

I would also like to thank all my fellow researchers and collaborators, who have been a pleasure to

work with. Thanks to Raj Joshi, Xiangpeng Sun, Atishya Jain, Sameer Pande, Jingzhi Zhang, Melodies

Sim, Sean Ng, Sherman Lim, Tiu Wee Han, Vishal Bindal, Lakshay Rastogi, Peirui Cao, Gao Ya, and

Archit Bhatnagar. Special mention to Raj, who has been a mentor and a friend since I began doing

research during my first research internship. I have learned a lot about the importance of resilience

and diligence from working with him for many years now. I am also thankful for my other lab mates

and friends at NUS: Zixiao Wang, Oana Barbu, Ashish Dandekar, Nishant Buddhev, Aseem Pahuja,

Soundarya Ramesh, Chahwan Song (Mason), Xin Zhe Khooi, and Alen Sabu. They have all been

excellent company not just at the lab, but also during many weekend hikes and way too many coffee

breaks. A lot of our papers would also not have been possible without the support of the admin staff

here at NUS. Special thanks to Iris Chang, who made dealing with our grants, equipment purchases, and

hiring so easy. Thanks also to Line Fong and Lee Kheng Goh for their administrative support.

I feel very fortunate to have friends like Akash Warty, Nagaraj Archak, Syamantak Das, Aadithya

Vidyasagar, Yash Tewari, John V George, Rachit Rajat, Harsh Bajaj, Eesha Saxena, Akshay Chanda,

Dennis James, Abdullah Siddiqui, and Keerthi Chandra - all of whom have brought me a lot of cheer

and joy at various times during my PhD. Special mention to the Westies, who have invariably been the

best company to return to at the end of both good and bad weeks.

Last but not least, I owe a debt of gratitude to my parents and my sister. They have always provided

unquestioning and unconditional support for everything I have done. This thesis is dedicated to them.

Contents

Abstract i

List of Publications iii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Traditional CCA design . 2
1.2 Internet Transport is Evolving . 3
1.3 Summary of Thesis Contributions . 4

1.3.1 Understanding the Internet’s evolving heterogeneous CCA landscape . . . 6
1.3.2 Nash Equilibria in Internet Congestion Control 8
1.3.3 Speciation in QUIC Congestion Control 9

1.4 Organization . 10

2 Background and Related Work 11
2.1 Identifying Congestion Control Algorithms in the wild 12

2.1.1 Why existing techniques fail . 15
2.2 Studying the interactions between CUBIC and BBR 17

2.2.1 A Primer on BBR . 17
2.2.2 BBR’s interactions with CUBIC . 18
2.2.3 Predicting BBR’s future adoption on the Internet 20

2.3 QUIC . 21
2.3.1 Speciation in QUIC Congestion Control 23

3 The Great Internet TCP Congestion Control Census 25
3.1 Background . 25
3.2 Methodology . 28

3.2.1 Measuring cwnd over time . 28
3.2.2 Designing a Network Profile . 32
3.2.3 Classification . 35
3.2.4 Implementation . 39

3.3 Results . 41
3.3.1 Verification of Measurement Accuracy . 42
3.3.2 TCP variants on the Internet . 43
3.3.3 Traffic Volume & Popularity . 46
3.3.4 Whithering the Unknown Variants . 47

x CONTENTS

3.3.5 TCP Evolution over the past Two Decades 52
3.4 Discussion . 54
3.5 Summary . 56
3.6 Resources . 57

4 Are we heading towards a BBR-dominant Internet? 59
4.1 Modelling Interactions between BBR and CUBIC 62

4.1.1 Background . 62
4.1.2 Issues with Model by Ware et al. 64
4.1.3 Basic 2-Flow Model . 66
4.1.4 Modelling Multiple Flows . 71

4.2 Model Validation . 72
4.2.1 Basic 2-Flow Model . 73
4.2.2 Multiple Flows . 74
4.2.3 Varying the Proportion of Flows . 75

4.3 Applying Game Theory . 77
4.3.1 NE for flows with similar RTTs . 77
4.3.2 Other Congestion Control Algorithms . 80
4.3.3 Complex Utility Functions . 81
4.3.4 Experimental Verification . 83
4.3.5 Flows with different RTTs . 85
4.3.6 BBR Predictions applied to BBRv2 . 86

4.4 Discussion . 87
4.5 Summary . 91

5 Containing the Cambrain Explosion in QUIC Congestion Control 93
5.1 Methodology . 98

5.1.1 Measuring similarity between implementations 99
5.1.2 Defining the Performance Envelope . 100
5.1.3 Quantifying similarity with Conformance and Conformance-T 103
5.1.4 Experiment Setup . 106

5.2 Measurement Results . 108
5.2.1 Conformance of CCA implementations of mainstream QUIC stacks 109
5.2.2 Investigating Conformance “in the Wild” 114
5.2.3 Fairness between Implementations . 115
5.2.4 Contradicting known trends in inter-CCA fairness 116

5.3 Fixing low-conformance implementations . 117
5.4 Discussion . 120
5.5 Summary . 123
5.6 Resources . 124

6 Keeping an Eye on Congestion Control in the Wild with Nebby 125
6.1 Background & Motivation . 128

6.1.1 Replicating Gordon . 128
6.1.2 Why CCA Identification is Hard . 129

6.2 Methodology . 133
6.2.1 Estimating Bytes in Flight (BiF) . 134
6.2.2 Handling QUIC packets . 135
6.2.3 Minimal Set of Network Profiles . 136
6.2.4 Designing an Extensible Classifier . 139
6.2.5 Supporting Web Browsers & Multiple Flows using Selenium 145

6.3 Evaluation . 145

CONTENTS xi

6.3.1 Measurement Accuracy and Usability . 146
6.3.2 Results for Alexa Top 20k Websites . 147
6.3.3 Extending Nebby to identify new CCAs 149
6.3.4 CCA Implementations in QUIC Stacks . 151
6.3.5 Video Measurements with Selenium . 154

6.4 Discussion . 156
6.5 Summary . 159
6.6 Resources . 159

7 Conclusion 161
7.1 Summary of Internet CCA Evolution (2001–present) 162
7.2 The cause and effect of CCA heterogeneity . 163
7.3 Future Work . 166

Bibliography 169

Abstract

Research in Internet congestion control has seen a renaissance in the past few years driven

by two key developments. In 2016, Google proposed and deployed BBR, a congestion control

algorithm that represents a departure from traditional loss-based algorithms like CUBIC and

New Reno. Internet transport is also moving to the userspace, with the adoption of QUIC, a

new transport stack that is already widely deployed and is set to be the default with HTTP3.

While both these developments pose their own unique challenges, they both introduce a large

amount of heterogeneity in the Internet’s congestion control landscape.

One of the reasons Internet congestion control has largely remained stable in the past is that

it has benefited from a homogeneous ecosystem of well-understood AIMD congestion control

algorithms. However, the recent advancements in BBR and QUIC will challenge this paradigm.

In this thesis, we examine the impact that these two developments will have on the Internet’s

congestion control landscape, and how they will likely influence its evolution in the near future.

We present a 5-year study into how congestion control on the Internet is evolving in response

to the deployment of BBR and QUIC from 2019 to 2023, with snapshots of the composition of

congestion control algorithms deployed on the Internet in 2019 and late 2023. Our measure-

ment study revealed that within three short years of being introduced in 2016, BBR was quickly

becoming a dominant congestion control algorithm on the Internet and was deployed by 18%

of the Alexa Top 20,000 websites. This rapid adoption was likely a result of early adopters of

BBR reporting higher and more consistent throughput after switching to it from more tradi-

tional congestion control algorithms like CUBIC. To better understand how these performance

incentives can drive BBR’s adoption on the Internet, we developed a mathematical model that

can predict how BBR’s throughput advantage over CUBIC will change as more flows on the

Internet start adopting BBR. Based on our game theoretic analysis of this model, we make the

bold prediction that BBR will never completely replace CUBIC on the Internet. This claim was

validated by our 2023 snapshot of the Internet, where we found BBR’s share of websites on the

Internet to be similar to that in 2019.

We also studied how congestion control algorithms are implemented in QUIC, and how

well they conform to the standard implementations of CCAs in the Linux kernel that they

try to emulate. Our investigations on this front have revealed that the QUIC ecosystem risks

ii Abstract

introducing significant CCA heterogeneity on the Internet because it is easy to modify and

implement new CCAs in QUIC. We have found evidence that QUIC stacks deployed by Meta and

Google have implementations of BBR and CUBIC that do not conform to their implementations

in the Linux kernel. To this end, we propose techniques for identifying such modified CCAs in

QUIC stacks and correcting them.

Overall, this thesis reveals that there is significant heterogeneity in the Internet congestion

control landscape today. Our results suggest that this heterogeneity will only increase in the

future. The novel measurement methodologies proposed in this thesis will allow us to monitor

the ongoing evolution of Internet congestion control and inform the future design of modern

congestion control algorithms for a heterogeneous Internet.

List of Publications

1. Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, Ben Leong, “The
Great Internet TCP Congestion Control Census”. Proceedings of ACM SIGMETRICS
2020. Boston, Massachusetts, USA. June 2020 [1], (Chapter 3)

2. Ayush Mishra, Jingzhi Zhang, Melodies Sim, Sean Ng, Raj Joshi, Ben Leong, “Conjec-
ture: existence of Nash Equilibria in Modern Internet Congestion Control”. Proceedings
of 5th Asia-Pacific Workshop on Networking (APNet 2021). Shenzhen, China. June 2021
[2], (Chapter 4)

3. Ayush Mishra, Tiu Wee Han, Ben Leong, “Are we heading towards a BBR-dominant
Internet?”. Proceedings of ACM IMC 2022. Nice, France. October 2022. [3], (Chapter 4)

4. Ayush Mishra, Sherman Lim, Ben Leong, “Understanding Speciation in QUIC Conges-
tion Control”. (Short paper) Proceedings of ACM IMC 2022. Nice, France. October 2022.
[4], (Chapter 5)

5. Ayush Mishra, Ben Leong, “Containing the Cambrian Explosion in QUIC Congestion
Control”. Proceedings of ACM IMC 2023. Montreal, Canada. October 2023. [5], (Chap-
ter 5)

6. Ayush Mishra, Lakshay Rastogi, Raj Joshi, Ben Leong, “Keeping an Eye on Conges-
tion Control in the Wild with Nebby”. Proceedings of ACM SIGCOMM 2024. Sydney,
Australia. August 2024. [6], (Chapter 6)

List of Figures

1.1 cwnd regulation in classic CCAs like Tahoe and Reno [7]. BDP is the bandwidth-
delay product. 2

2.1 The evolution of Internet transport. Previous snapshots of Internet’s CCA land-
scape are marked in red, and the ones presented in this thesis are marked in
blue. 12

2.2 Kleinrock optimal point [8] (C is the link capacity). 19

3.1 Possible scenarios for random losses. 30
3.2 Sensitivity analysis for repeated measurements. 31
3.3 cwnd measurement for reddit.com. 32
3.4 Evolution of CUBIC cwnd for different packet drops. 32
3.5 How BBR reacts to the bandwidth changes. 34
3.6 cwnd evolution of CCAs in the Linux kernel in response to the final network profile. 36
3.7 Calculating α and β from the 3 regions. 37
3.8 Shapes identified by Gordon’s classifier. 38
3.9 Identifying stable regions for loss-agnostic flows. 40
3.10 Gordon Design. 40
3.11 CDF of file sizes used in measurements. 42
3.12 The evolution of BBR. 45
3.13 Distribution of variants among the Alexa Top-k sites. 48
3.14 Sample traces for websites hosted by Akamai. 50
3.15 The weird and wonderful world of TCP in the wild. 52

4.1 BBR bandwidth share for 50-Mbps bottleneck link at 40 ms RTT. 64
4.2 Network model. 68
4.3 Predicted throughput vs. actual throughput when a CUBIC flow competes with

BBR. 73
4.4 Predicted vs. actual throughput of BBR and CUBIC flows when they compete

at 100 Mbps bottleneck with 40 ms RTT. 74
4.5 The diminishing throughput returns for BBR as its share at the bottleneck grows. 76
4.6 Nash Equilibrium for flows with similar RTTs. 78
4.7 Combined bandwidth vs. number of flows for various congestion control algorithms. 81
4.8 Average per-flow throughput. 81
4.9 Average queuing delay . 81
4.10 Predicted Nash Equilibrium vs. observed Nash Equilibria points for a bottleneck

with 50 flows. 82

vi LIST OF FIGURES

4.11 Nash Equilibrium distributions between CUBIC and BBR flows with different
RTTs. 85

4.12 Nash Equilibrium distributions between competing CUBIC and BBRv2 flows. . . 87
4.13 Performance of the model in ultra-deep (>100*BDP) buffers. 89

5.1 A single convex hull for the PE does not fully capture low conformance in
quiche CUBIC. 96

5.2 Two distinct clusters corresponding to TCP BBR’s ProbeBW (red) and ProbeRTT
(blue) phases. 102

5.3 Clusters for CUBIC and Reno are less distinct and tend to form around different
throughput levels. 102

5.4 Determining k, the number of clusters for a Performance Envelope. IOU =
Intersection over Union. 103

5.5 Conformance and Conformance-T values for modified versions of TCP BBR. . . 106
5.6 Conformance becomes significantly worse in 5 BDP (deep) buffers. (10 ms RTT,

20 Mbps) . 108
5.7 QUIC CUBIC implementations with low conformance for 1 BDP buffers. 110
5.8 QUIC BBR implementations with low conformance for 1 BDP buffers. 111
5.9 Performance envelopes for xquic Reno for different bottleneck buffer sizes. 111
5.10 Performance envelopes for mvfst BBR. (Conf.=Conformance) 112
5.11 Performance envelopes for xquic BBR. (Conf.=Conformance) 112
5.12 Conformance of various QUIC stacks when tested on AWS. Link speed was locally

limited to 100 Mbps. 113
5.13 Throughput ratios for competing implementations on CUBIC, Reno, and BBR

(20 Mbps, 50ms RTT). 114
5.14 Different implementations of CUBIC and BBR competing with each other (a

throughput ratio of 1 means the BBR flow starves the CUBIC flow.) 115
5.15 xquic BBR’s conformance before and after reducing cwnd gain from 2.5 to 2. . . 119
5.16 quiche CUBIC’s conformance before and after disabling its detection of spurious

packet losses (RFC8312 [9]). 120
5.17 mvfst BBR’s conformance before and after reducing its pacing gain. 121
5.18 chromium CUBIC’s conformance before and after changing the number of emu-

lated flows from 2 to 1. 122

6.1 Comparison of cwnd to BiF for BBRv1’s ProbeBw phase. 132
6.2 Using additional delay to increase the ratio of visible in-flight packets. 135
6.3 Impact of the additional delay on accuracy. 136
6.4 Traces of TCP congestion control algorithms in the current Linux kernel. 138
6.5 Characteristic features of periodic oscillations for CUBIC and BBR. 140
6.6 How Nebby’s Classifier works. 140
6.7 Coefficients for the polynomials (ax3 + bx2 + cx + d = 0) of all the loss-based

CCAs form distinct clusters. 144
6.8 Traces for amazon.com in different regions. 148
6.9 Catching the deployment of BBRv3 in the wild in Aug 2023. 151
6.10 Traces for websites deploying AkamaiCC. 152
6.11 Traces of non-conformant CCAs implemented in popular QUIC stacks. 155
6.12 BiF traces for Copa and PCC Vivace. 158

List of Tables

3.1 Shape Classification. 38
3.2 Known TCP Variant Classification. 39
3.3 Classification accuracy. 43
3.4 Distribution of variants as measured from different viewpoints on the Internet. . 44
3.5 Distribution of variants. 46
3.6 Excerpt of website traffic share (source: Sandvine [10]). 47
3.7 Custom network profiles to investigate uncategorized hosts. 49
3.8 Summary of websites not classified as known congestion control variants. 51
3.9 Evolution of TCP variants on the Internet over the past 2 decades. 53
3.10 Share of TCP variants normalized over all successful classifications. 55

4.1 Model Notation . 67

5.1 List of QUIC/TCP stacks studied and their available CCAs. 95
5.2 List of Known IETF QUIC/TCP stacks. 107
5.3 Summary of low-conformant implementations (1 BDP Buffer). 109
5.4 Summary of successful modifications to low-conformant implementations (1 BDP

buffer). 118

6.1 Distribution of TCP variants with Gordon [11]. 129
6.2 Properties of CCA Identification tools. 131
6.3 Different degree clusters with their CCAs. 145
6.4 Classification accuracy. 146
6.5 Distribution of CCA variants among Alexa Top 20k websites measured from

different viewpoints by Nebby. 147
6.6 Websites (11%) found to deploy New Reno. 148
6.7 CCAs deployed by most popular websites on the Internet by traffic-share. 150
6.8 Distribution of QUIC CCA variants as measured from different viewpoints on

the Internet. 153
6.9 List of open-source QUIC/TCP stacks studied. 153
6.10 Confusion Matrix for QUIC CCA variants. 154
6.11 CCAs serving popular web services running on a Selenium client. 155

7.1 Evolution of the Internet’s Congestion Control Landscape (2001–present). 162

Chapter 1
Introduction

The Internet has come a long way since its inception in 1969. From being a modest

DARPA networking project with 4 inter-connected computers supporting tens of users,

it has evolved into a civil infrastructure with billions of nodes that support more than

5 billion users [12] today. As a result of this evolution, Internet research no longer

enjoys the scientific amnesty afforded by other disciplines in computer science. Arguably,

critical algorithms and protocols that are deployed on the Internet should be subjected

to rigorous evaluation and testing to achieve good performance and prevent another

congestion collapse [7].

Congestion Control Algorithms (or CCAs for short) are one of the many critical al-

gorithms that keep the Internet reliable and stable. CCAs regulate how quickly a sender

can send data on the network. As the name suggests, congestion control algorithms keep

the network from becoming too congested, thereby avoiding packet loss and unnecessary

additional delays. Good congestion control algorithms are essential to web applications

to achieve quick response times, faster downloads, and lower latency. Since networks

support multiple connections, CCAs must also ensure that all these connections (or

flows) can equitably share network resources like bandwidth.

2 Introduction

BDP + Buffer

BDP

: packet loss

time (RTTs)

c
w
n
d

Figure 1.1: cwnd regulation in classic CCAs like Tahoe and Reno [7]. BDP is the
bandwidth-delay product.

1.1 Traditional CCA design

The earliest congestion control algorithms, like Tahoe[13] and Reno [7], regulated how

quickly they sent data on the network by limiting the number of unacknowledged packets

in flight. This limit was called the congestion window, or cwnd for short.

Since these algorithms were devised to avoid excessive retransmissions caused by

dropped packets, they treated packet loss as a sign of congestion. In the absence of

congestion (no packet loss) they would probe the network for more bandwidth by ad-

ditively increasing their cwnd. However, when a packet loss occurs, they would infer

that the network was congested and halve their cwnd. For this reason, these algorithms

were often called Additive Increase Multiplicative Decrease (AIMD) algorithms. We

illustrate the behavior of a classic AIMD algorithm in Figure 1.1.

In the past, we have been able to ensure the Internet was stable and predictable

because the mix of CCAs that have been deployed on the Internet has largely been a

homogeneous mix of loss-based AIMD or MIMD (Multiplicative Increase Multiplicative

Decrease) algorithms [14, 15, 16, 17]. Because they were relatively simple, they were pre-

dictable and well-understood [18]. While they differed in how they probed for additional

bandwidth, they all responded to the same congestion signal (packet loss).

In addition, because they were deployed on the Internet for so long, they had decades

of research and real deployment experience to prove that they were a stable congestion

1.2 Internet Transport is Evolving 3

control solution for the Internet. Therefore, the stability of the Internet has not been a

major concern since the first congestion collapse as most people used some flavor of an

AIMD congestion control algorithm on the Internet [19, 20, 21]. However, this paradigm

is changing quickly today.

1.2 Internet Transport is Evolving

Recent developments in Internet congestion control mean that we can no longer expect

the Internet to be a homogeneous mix of simple AIMD/MIMD CCAs. In particular, the

deployment of the BBR [22] congestion control algorithm in 2016 and the adoption of the

QUIC standard [23] in 2021 are forcing us to re-evaluate the stability and predictability

guarantees of AIMD algorithms and Internet congestion control in general.

BBR. In 2016, Google proposed and deployed BBR [22], a congestion control algo-

rithm with a drastically different congestion control philosophy compared to traditional

loss-based AIMD algorithms like CUBIC [16] and New Reno [7]. BBR is largely loss-

agnostic and instead modeled the network through bandwidth and Round Trip Time

(RTT) estimates to operate at the Kleinrock optimal point [8]. The deployment of BBR

on the Internet represents a paradigm shift in Internet Congestion Control. Not only

does BBR disrupt the ecosystem of traditional AIMD CCAs, but it also interacts with

legacy algorithms like CUBIC and Reno in often unfair ways [24, 25]. Over the years,

there have been many revisions and modifications to the basic BBR algorithm, both by

Google [26, 27] and other third parties that often deploy variants of BBR [4]. Today,

BBR and its many versions represent a family of model-based congestion control algo-

rithms that regularly interact and compete with the incumbent loss-based CCAs on the

Internet. Naturally, how these two contrasting congestion control philosophies interact

and co-exist will impact the Internet’s stability and fairness.

QUIC. Internet transport is also moving to the userspace, with the adoption of

4 Introduction

QUIC [23], a new transport stack that is already widely deployed [28] and is set to be

the default with HTTP3 [29]. While QUIC represents a change in the network transport

stack and not the congestion control algorithms themselves, new implementations of

QUIC will re-implement standard congestion control algorithms without any safeguards

checking the correctness and stability of these implementations. QUIC also lowers the

barrier to the implementation and deployment of new congestion control algorithms

because it is implemented in the userspace. It is therefore much easier for someone to

deploy untested and objectively unfair CCAs on the Internet.

While both these developments pose their own unique challenges, they both introduce

heterogeneity in the Internet’s congestion control landscape at levels we have never seen

before. It is easy to forget that key provisioning decisions are made based on the expected

mix of congestion control algorithms on the Internet. The composition of the Internet’s

congestion control landscape impacts how we size router buffers [30, 31], think about

inter-flow fairness [3, 24, 25], and even decide on the deployability of new congestion

control algorithms (CCAs) on the Internet [32].

1.3 Summary of Thesis Contributions

Overall, these recent developments suggest that we need to rethink Internet congestion

control in the future. While it was reasonable to expect that the mix of CCAs deployed

on the Internet was homogeneous, slow-moving, and predictable in the past, this is not

true anymore. However, before we respond to these rapid changes, we need to understand

what changes are happening on the Internet and potentially predict how the Internet will

continue to evolve. To this end, we need ways to track how the mix of CCAs deployed on

the Internet evolve, understand how these deployed algorithms interact and behave, and

how these interactions can be expected to drive their future adoption on the Internet.

This thesis represents a first step towards answering these questions.

1.3 Summary of Thesis Contributions 5

Overall, we present a 5-year study into understanding how the Internet is evolving

in response to the introduction and deployment of BBR and QUIC using measurements

and mathematical modeling. More specifically, we make the following contributions:

1. In view of BBR’s deployment in 2016, we provide a snapshot of the Internet’s

congestion control landscape in 2019 (§3). To do these measurements, we devel-

oped a new tool called Gordon [11] that was one of the first measurement tools

to successfully identify websites on the Internet deploying BBR. Gordon’s mea-

surements showed that BBR, just 3 short years since being proposed, was already

being deployed by close to 18% of the Alexa Top 20,000 websites on the Internet.

Since most of these websites streamed video or delivered large files, BBR’s share

of downstream traffic was estimated to be even larger, more than 40%.

2. We evaluate if BBR’s rapid adoption meant that we can expect it to replace legacy

CCAs like CUBIC and Reno in the future (§4). To this end, we present a mathe-

matical model for competing CUBIC and BBR flows and show that BBR’s perfor-

mance benefits are going to diminish with its increased adoption on the Internet.

On the basis of our model, empirical results, and game theoretic analysis, we make

a bold prediction that BBR is unlikely to completely replace CUBIC and the In-

ternet will remain a heterogeneous mix of CCAs for the foreseeable future.

3. We also investigate how CCAs are implemented in popular QUIC stacks and

how their behavior can vary across implementations (§5). To this end, we built

QUICbench [33], a benchmarking tool for open-source QUIC stacks that can mea-

sure how conformant a QUIC CCA implementation is to its Linux kernel counter-

part. QUICbench assigns CCA implementations this conformity score based on a

new metric we call the Performance Envelope. Using QUICbench we show how

popular QUIC stacks, like those deployed by Meta and Google, often modify stan-

dard CCAs like BBR and CUBIC and risk introducing even more heterogeneity

6 Introduction

on the Internet.

4. Given the large degree of current and future heterogeneity we expect to persist

on the Internet, we propose Nebby (§6), a future-proof CCA classification and

identification tool that works not only with TCP but is also one of the first CCA

measurement tools that can work with QUIC and live browser traffic. Nebby

addresses the shortcomings of the CCA measurement tools that came before it

(including Gordon, which as of 2024 gets blocked by most websites) by aiming to

to be as passive as possible. We use Nebby to capture a snapshot of the mix of

CCAs on the Internet in 2023. In addition to catching the deployment of then

unannounced variants like BBRv3, we also observed stagnation in BBR’s adop-

tion on the Internet since 2019. This is in line with our prediction (made in §4)

that BBR’s performance benefits will stagnate and it will never completely re-

place CUBIC on the Internet. We look at these results in full context with our

measurements from 2019 in §7 as well.

We provide a more detailed overview of these contributions below.

1.3.1 Understanding the Internet’s evolving heterogeneous CCA land-

scape

In this thesis, we present two snapshots of the Internet’s congestion control landscape.

The first of these snapshots was captured in 2019 via an Internet-scale measurement

study [1] of the Alexa Top 20,000 websites on the Internet. This measurement study

was done in response to the deployment of BBR in 2016. We wanted to understand how

commonly BBR was deployed on the Internet.

To this end, we designed and implemented Gordon, a tool that allows us to measure

the exact congestion window (cwnd) corresponding to each successive RTT in the TCP

connection response of a congestion control algorithm. To compare a measured flow to

1.3 Summary of Thesis Contributions 7

known CCA variants in the Linux kernel, we created a localized bottleneck where we can

introduce a variety of network changes like loss events, bandwidth change, and increased

delay. An offline classifier was used to identify the TCP variant based on its cwnd trace

over time.

Our measurements revealed that in 2019, CUBIC remained the dominant CCA on

the Internet and was deployed on about 36% of the websites in the Alexa Top 20,000

list. However, in just three short years since it was first proposed, BBR was in second

place and already deployed by 22% of the measured websites. That said, its total share

of traffic volume was likely to be disproportionately larger (40%) since most websites

deploying BBR hosted bandwidth-intensive content like videos and large files. We also

found many Akamai-hosted websites deploying an undocumented CCA, that we referred

to as AkamaiCC. This challenges the conventional assumption that CCAs deployed on

the Internet would come from a known set of CCAs.

In late 2023, we repeated this measurement study to understand how the mix of

CCAs on the Internet had evolved since our last measurement study in 2019. Because

Gordon no longer works (see §6.1.1), this second snapshot was captured using a much

more sophisticated tool called Nebby that was capable of classifying CCAs over not just

simple wget TCP connections, but also over live browser sessions and QUIC connections.

This second measurement study not only confirmed the stagnation in BBR’s adoption

as predicted by our mathematical model in 2022 [3], but also revealed some interesting

trends in the preference of BBR over CUBIC depending on region and content type.

Nebby was also able to capture an early deployment of BBRv3 [27] before it was formally

announced by Google and catch the latest evolution of AkamaiCC, which was no longer

limited to Akamai-hosted websites.

8 Introduction

1.3.2 Nash Equilibria in Internet Congestion Control

When we observed an unprecedented adoption of BBRv1 on the Internet in 2019, just

three short years since it was first proposed, we could not help but wonder if BBR was

poised to replace CUBIC and other legacy congestion control algorithms on the Inter-

net. Most of BBR’s early deployments seemed to be driven by the fact that it provided

better throughput than CUBIC on the Internet. This was confirmed by early deploy-

ment results published by Google [34], Dropbox [35], and Spotify [36]. To investigate

the performance benefits that could drive BBR’s adoption on the Internet, we stud-

ied the interactions between CUBIC and BBR and demonstrated that these two CCAs

competing for bandwidth can be modeled as a normal-form game. Our game-theoretic

analysis, mathematical model, and testbed measurements suggested that while BBR

seems to achieve somewhat better performance than CUBIC on the Internet today, this

advantage was likely to decrease as more and more people on the Internet adopted BBR.

Therefore, we predicted that the distribution of congestion control algorithms on

the Internet would likely reach a Nash Equilibrium, where no flow has the incentive

to switch from CUBIC to BBR, or vice versa. We also found that the distribution of

CUBIC and BBR flows in this Nash Equilibrium will be dependent mainly on the size

of the bottleneck buffer, and marginally on the RTT distribution of the flows. All these

results suggested that the future Internet was likely to continue to be heterogeneous and

that buffer sizing would continue to have a significant impact on Internet congestion

control.

Our methodology is also applicable to other recently proposed congestion control

algorithms, like BBRv2 [26] and PCC Vivace [37]. Given the results of this study,

we made a bold prediction that BBR is unlikely to completely replace CUBIC on the

Internet for the foreseeable future. Our measurements from late 2023 indicate that this

is indeed the case, with BBR’s share on the Internet remaining stagnant since our last

1.3 Summary of Thesis Contributions 9

measurement study in 2019.

1.3.3 Speciation in QUIC Congestion Control

Besides BBR, QUIC is also a significant development for Internet Congestion Control.

The QUIC standard is expected to replace TCP in HTTP 3.0 [38]. In 2022, more than

25 open-source QUIC stacks were already being tested, with a large number of them

being deployed on the Internet by major players like Google and Meta.

While QUIC implements a number of the standard features of TCP differently, most

QUIC stacks re-implement standard congestion control algorithms. This is because

these algorithms are well-understood and time-tested. However, there is currently no

systematic way to ensure that these QUIC congestion control protocols are implemented

correctly and predict how these different QUIC implementations will interact with other

congestion control algorithms on the Internet.

To address this gap, we developed QUICbench [33], a benchmarking tool to allow

QUIC developers to verify the correctness of their CCA implementations. QUICbench

recognizes that since each CCA represents a trade-off between network metrics like

throughput and delay, each CCA implementation should be characterized and then

tested for conformance using a metric that captures this trade-off. To this end, we

presented a new metric called the Performance Envelope, that captured the throughput-

delay trade-off space a CCA implementation exists in. QUICbench then uses novel

metrics like conformance and conformance-T (which are used to compare the perfor-

mance envelopes of different implementations) to determine if a CCA implementation

has been incorrectly tuned or implemented and even suggest corrections.

We used QUICbench to measure the CCAs implemented by 11 open-source QUIC

stacks following the IETF QUIC standard and compared them to their respective ref-

erence implementations of CUBIC, Reno, and BBR in the Linux kernel. Our investiga-

tions revealed that there is already a significant deviation between the existing QUIC

10 Introduction

implementations of standard congestion control algorithms from the reference imple-

mentations. QUICbench has been instrumental in revealing these implementation and

stack-level differences. Overall, we have found 7 CCA implementations of CUBIC, Reno,

and BBR that do not conform to their kernel counterparts. QUICbench has been able

to provide hints on how we can modify four of these variants to be more conformant.

Overall, our investigations of the CCA implementations in existing open-sourced

QUIC stacks has revealed that they need to be closely monitored and tested for con-

formance, and risk introducing additional CCA heterogeneity on the Internet. Per-

haps more alarmingly, they can even undermine our understanding on how we expect

prominent congestion control algorithms like CUBIC and BBR to interact because their

behavior can now no longer be expected to be faithfully replicated by all of their imple-

mentations.

1.4 Organization

The thesis is organized as follows. We first review related work in Chapter 2. We then

present the results of our first Internet-scale CCA measurement study (titled The Great

Internet TCP Congestion Control Census) in Chapter 3. We investigated the question

of whether BBR’s unprecedented adoption would likely result in a BBR-dominated In-

ternet congestion control landscape in Chapter 4. We also examine QUIC’s impact on

general CCA heterogeneity and propose metrics to verify the correctness of CCA imple-

mentations in QUIC stacks in Chapter 5. As the final concluding work, we propose a

new future-proof CCA identification tool called Nebby in Chapter 6 and use it to pro-

duce a more recent snapshot of the Internet’s congestion control landscape. Finally, we

conclude by discussing the implications of our findings and future work in Chapter 7.

Chapter 2
Background and Related Work

Studying the mix of congestion control algorithms on the Internet and mathematically

modeling how they interact has been of interest to the networking community for as long

as the Internet has existed. For example, the first Internet-scale measurement study for

identifying congestion control algorithms in the wild was done more than two decades ago

in 2001 [39]. This is expected because the performance of congestion control algorithms is

highly contextual and depends on the other congestion control algorithms they compete

with. Furthermore, the mix of CCAs on the Internet dictates how we decide to provision

router buffers [40] and ensure fairness and stability on the Internet [41].

As the Internet continues to evolve, so have these measurement and modeling tech-

niques. However, as we will discuss in this chapter, most of these early techniques were

very rudimentary because they did not anticipate the current levels of heterogeneity on

the Internet. As discussed in §1, our goal in this thesis is to uncover the current hetero-

geneity of CCAs on the Internet and to predict how the deployment of BBR and QUIC

will drive its evolution in the future. In particular, we wanted to

1. Identify congestion control algorithms deployed by web servers in the wild

2. Understand how CUBIC and BBR, the two most dominant CCAs on the Internet

12 Background and Related Work

1986 1994 1999

2001

2003

2004

2006 2010

2011 2019
Reno
Tahoe Vegas

New Reno

Binomial
Westwood

HSTCP
 Veno

BIC
FAST
Jersey
Hybla

CTCP

YeAH

2023

2021

QUIC standardized

Gordon Nebby

CUBIC
Illinois
HTCP

Ledbat

DCTCP

Remy
Sprout
PRR
PCC
TIMELY

BBR

Proprate

Vivace
Copa

2016

Figure 2.1: The evolution of Internet transport. Previous snapshots of Internet’s CCA
landscape are marked in red, and the ones presented in this thesis are marked in blue.

today, interact

3. Study how congestion control is implemented in QUIC

In this chapter, we will discuss why existing methods fall short of achieving these

goals and how our novel measurement and modeling techniques can help researchers get

a handle on the modern heterogeneous congestion control landscape of the Internet.

2.1 Identifying Congestion Control Algorithms in the wild

Identifying congestion control algorithms in the wild is not a new problem. To the best of

our knowledge, before our efforts in 2019, there have been four prior studies attempting

to characterize TCP congestion control variants deployed in the wild. We summarize the

evolution of Internet congestion control along with these previous measurement studies

and our own two measurement studies in Figure 2.1.

The general approach to identifying congestion control algorithms (CCAs) in the

wild has largely remained unchanged over the years. It involves making a connection

with a remote web server under very specific network conditions (some emulated delay,

bandwidth, and/or packet drops), and then observing the server’s sending behavior in

response to these network conditions. If this response is measured using the right metric

and the network conditions are chosen such that they elicit a unique response from every

2.1 Identifying Congestion Control Algorithms in the wild 13

CCA, then it becomes possible to classify the CCA run by the remote server. Over the

years, as the CCAs deployed in the wild have become more diverse and sophisticated,

the techniques used for CCA classification on the Internet have evolved as well.

In 2001, Padhye et al. [19] used a tool called TBIT that performed a specialized 25-

packet drop and accept pattern, which allowed it to detect if a web server was running

one of the four target congestion control variants: Reno, New Reno, Reno Plus and

Tahoe. Because its target set of congestion control algorithms was relatively small,

TBIT could get away with having a very ad hoc classification strategy that only worked

for these four CCAs. At the time of publication, the consensus was that Reno was the

most widely deployed variant. However, their results showed that most of the Internet

was already using New Reno. In 2004, Medina et al. [20] followed up on the work by

Padhye et al. by using TBIT to perform active and passive measurements of more than

84,000 hosts on the Internet. Although they were only able to classify 33% of their

target hosts, the categorized hosts showed a continued trend of moving from Reno to

New Reno, as previously observed by Padhye et al. [19].

However, by 2011, TBIT was already reaching the limits of its capabilities. As

we can see in Figure 2.1, there was an explosion of new CCAs since TBIT was first

designed in 2001. Since TBIT was ad hoc and was not designed to identify any CCAs

outside of variants of Reno and Tahoe, it would have been blind to the deployment of all

these new CCA variants. The most significant of these variants were CUBIC [16] and

Compound TCP (CTCP), which were in the process of becoming the default congestion

control algorithms for Linux and Windows operating systems, respectively. Therefore, in

2011, Yang et al. [21] had to build a new CCA classification tool for their measurement

study, which they called CAAI. This study was also the last update on the distribution

of congestion control variants on the Internet prior to our measurement study in 2019.

CAAI classifies TCP variants on the Internet using cwnd traces collected via two distinct

network profiles. It extracts feature vectors from these cwnd measurements and identifies

14 Background and Related Work

them through a classifier trained on cwnd traces from controlled servers in a local testbed.

CAAI uses delayed ACKs to bloat the RTT in an attempt to ‘space out’ the individual

cwnds in a connection. This technique was sufficient for classifying the suite of window-

based CCAs that were popular on the Internet in 2011. However, as we will cover in

§3, just like TBIT, CAAI’s measurement methodology also became ineffective in the

face of BBR’s deployment in 2016. Nevertheless, in 2011, their measurements showed

that BIC, CUBIC, and Compound TCP (CTCP) together had become more popular

than New Reno. Separately, Yang et al. also identified delay-based variants such as

YeAH [42], Vegas [43], Veno [44] and Illinois [45] [46]. They found that about 4% of the

Internet hosts tested used these delay-based congestion control variants. In 2020, Gong

et al. [47] conducted another Internet-scale CCA measurement study using their tool

Inspector Gadget (IG). IG largely followed CAAI’s measurement methodology with a

rudimentary classifier for BBR. However, as we will cover in §6, Gordon, IG, and all the

other CCA classification tools before them are not future-proof or client-agnostic. For

example, none of them can work with QUIC connections or live browser traffic. Nebby

does not have any of these limitations.

Outside of these Internet-scale CCA measurement studies that are directly compa-

rable to our own measurement studies conducted in 2019 (using Gordon, §3) and 2023

(using Nebby, §6), there have also been some work on TCP-related measurements that

focus on evaluating congestion control algorithms and their implementations.

Chen et al. used deep neural networks to analyze passive measurements taken from

TCP receivers and identify the congestion control variant used by a TCP sender [48].

They used traces of long continuous flows to train a Long Short Term Memory (LSTM)

neural network that classifies the trace behaviors into the congestion control variants

by using features such as RTT, packets in flight and throughput. Their evaluation was

done only on a controlled testbed, and so it is not surprising that neural networks can

classify relatively well behaved traces. Because evaluation was not performed on actual

2.1 Identifying Congestion Control Algorithms in the wild 15

Internet hosts, no attempts were made to address the noise from packet losses on the

Internet. We have reason to believe that such noise would introduce significant errors.

Hagos et al. used machine learning to infer the state of a TCP sender [49]. Comer

et al. used active probing techniques to reveal implementation flaws, protocol viola-

tions, and design decisions of the 5 commercial black box congestion control implemen-

tations [50]. Sun et al. [51] and Lubben et al. [52] also evaluated the correctness of

TCP implementations in controlled testing environments. None of these are directly

applicable for identifying TCP variants on the Internet.

2.1.1 Why existing techniques fail

A common thread that connects all the CCA classification tools before Gordon and

Nebby is a lack of generality and future-proofness. All these tools did not anticipate

how heterogeneous the Internet’s congestion control landscape can be. They aimed to

identify a small known set of CCAs on the Internet, which resulted in the design of

ad hoc classification techniques that were often very tightly coupled with their cwnd

measurement methodologies. Case in point, even though TBIT [19, 20], CAAI [21], and

Inspector Gadget [47] all use cwnd traces to identify CCAs in the wild, they do not have

classifiers that can work interchangeably. This limited these tools from being adapted

to newer congestion control algorithms that were deployed on the Internet after these

measurement studies were conducted.

Because of this limitation, both our measurement tools, Gordon and Nebby, decouple

the measurement methodology from the classifier so that they can accommodate more

sophisticated classifiers in the future. We elect to collect traces over standard network

profiles that not only sufficiently capture the characteristic behaviors of our target set

of CCAs, but also help us get insights into the congestion control logic of any unknown

CCAs we might encounter on the Internet. Our classifier is also designed keeping in

mind that we might encounter unknown and undocumented variants on the Internet. It

16 Background and Related Work

is for this reason we elect not to use machine learning to build our classifier. This is

because while supervised learning approaches have been reasonably successful in identi-

fying known TCP variants, they will not be able to uncover new undocumented variants

that are surprisingly common. This issue carries over to other CCA-identification tools

that were proposed since Gordon as well, like Inspector Gadget [47]. For example,

even though both Gordon and Inspector Gadget performed their measurements in 2019,

Gordon was able to catch the deployment of a proprietary CCA by Akamai [1] while

Inspector Gadget could not do so.

Another reason why we can’t use previous measurement tools for classifying conges-

tion control algorithms on the Internet anymore is the proliferation of rate-based CCAs

on the Internet since BBR was introduced in 2016. All previous measurement studies

used cwnd measurements to classify congestion control algorithms. This worked well on

the pre-BBR Internet since all the target congestion control algorithms were window-

based. The cwnd was therefore a true representation of their response to different network

conditions and therefore sufficient for differentiating them from other CCAs. This is not

true for rate-based CCAs. Rate-based CCAs typically use the cwnd as a safeguard and

not an operating point. Because of this, we run the risk of not actually capturing a

rate-based CCA’s behavior in response to different network conditions if we measure the

cwnd. In fact, our first measurement tool, Gordon, also suffers from this limitation and

had to design an ad-hoc classifier for BBR. Learning from these limitations our latest

CCA identification tool, Nebby, measures the bytes in flight (BiF) of a remote sender in

order to reliably capture its response to different network conditions.

In summary, previous measurement tools do not work well because they were solu-

tions that were very specific to their target set of CCAs, and not general enough to be

future proof. We discuss how both our measurement tools, Gordon and Nebby, address

these limitations in §3 and §6 respectively.

2.2 Studying the interactions between CUBIC and BBR 17

2.2 Studying the interactions between CUBIC and BBR

Unsurprisingly, BBR’s unprecedented and rapid adoption on the Internet since its pro-

posal in 2016 has inspired many studies into studying its general performance over a

variety of network conditions, its fairness properties, and how it interacts with tra-

ditional congestion control algorithms [24, 25, 53, 54]. In this section, we will first

describe BBR’s model-based approach to congestion control and how it differs from tra-

ditional loss-based and window-based CCAs. We will then cover related works that have

looked into BBR’s performance and how it interacts with traditional congestion control

algorithms like CUBIC.

2.2.1 A Primer on BBR

First proposed in 2016, BBR [22] is a model-based congestion control algorithm that tries

to model the network path by estimating the bottleneck bandwidth and the minimum

RTT. It estimates the bottleneck bandwidth via the receive rate (the rate at which it

receives ACK packets) and tries to match it to minimize queuing at the bottleneck. It

does so to reduce the additional queuing delay at the bottleneck queue while matching the

bottleneck rate to ensure utilization. Therefore, in theory, BBR aims to operate at the

Kleinrock optimal point [8] (see Figure 2.2). In practice, since the optimal point is likely

to be a moving target, BBR periodically probes the network to get updated estimates on

the network path’s bottleneck bandwidth (C) and minimum RTT (RTTmin). It probes

for spare bandwidth by periodically increasing it’s sending rate 1.25 times the receive

rate every 8 RTTs. It then immediately reduces the rate to 0.75 times the receive rate in

order to drain any queuing the previous bandwidth probing cycle might have created. In

order to estimate the minimum RTT, all BBR flows collaboratively reduce their inflight

to a handful of packets every 10 seconds to completely drain the bottleneck buffer.

While the model-based approach works well when all the flows at the bottleneck are

18 Background and Related Work

BBR flows, BBR’s estimates can often go off-kilter when competing with a traditional

loss-based congestion control algorithm like CUBIC. We will explore how these interac-

tions govern how CUBIC and BBR flows share the bottleneck link in more detail in §4

- but at a high level, BBR flows and CUBIC flows do not interact well because of two

critical differences:

1. Congestion Inference. While CCAs like CUBIC infer network congestion via a

packet loss, BBR flows are completely loss-agnostic. In the event of a packet loss

while a CUBIC flow would back off and reduce its cwnd, BBR will be completely

unaffected. BBR’s sending behavior is regulated only by what its internal model

thinks the network looks like. Therefore, since CUBIC and BBR respond differently

to packet loss, the lossy-ness of a network and the bottleneck buffer size can often

decide how they share the bottleneck link.

2. Operating Points. A corollary of CUBIC only using packet-loss as a congestion

signal is that it typically likes to fill the entire bottleneck buffer. For this reason,

loss-based CCAs are often called buffer fillers, because they only slow down once

they see a packet loss due to buffer overflow. Therefore, while BBR aims to op-

erate at the Kleinrock optimal point, CUBIC usually keeps the buffer filled (see

Figure 2.2).

2.2.2 BBR’s interactions with CUBIC

Hock et al. conducted the first independent study into understanding how BBR interacts

with CUBIC flows [24]. They observed that in shallow buffers of less than 1BDP, BBR

flows take a larger share of the bandwidth compared to competing CUBIC flows. They

argued that BBR’s bandwidth probing causes buffer overflows and bursty losses for com-

peting CUBIC flows. The resulting packet loss causes CUBIC to reduce its cwnd, which

in turn allows BBR to take a larger share of the bandwidth. This cycle is perpetuated

2.2 Studying the interactions between CUBIC and BBR 19

Amount in Flight

D
el

iv
er

y
R
at

e

BDP BDP + Buffer size

C

Amount in Flight

R
TT

BDP BDP + Buffer size

RTTmin

: Kleinrock optimal point

: Loss-based CCA operating point

Figure 2.2: Kleinrock optimal point [8] (C is the link capacity).

with every bandwidth probe, leading to CUBIC starving for bandwidth. This observa-

tion is corroborated by other studies [53, 54]. Scholz et al. conducted experiments with

up to 10 BBR flows competing with 10 CUBIC flows [53] and showed that BBR flows are

always able to claim at least 35% of the total bandwidth. Dong et al. also made a similar

observation that when a single BBR flow competes with an ever-increasing number of

CUBIC flows, BBR’s fraction of the bandwidth remains the same [55]. While these early

results were interesting, they were ultimately empirical and did not provide any insights

into how BBR can be expected to compete with CUBIC in any given network.

To the best of our knowledge, the best state-of-the-art model for the interactions

between CUBIC and BBR before our work was published in 2022 was the model by

Ware et al. [25]. Ware et al. demonstrated that BBR’s performance is governed by its

cwnd in deep buffers. They claimed that for very deep buffers, BBR flows collectively take

up a fixed share of the bottleneck buffer. Unfortunately, some of the assumptions their

model makes are not applicable for a lot of networks and hence it is not accurate over a

large range of buffer sizes. One of its key shortcomings is that it assumes that bottleneck

20 Background and Related Work

buffers are always full. Our model, which is discussed in more detail in Chapter 4 makes

none of these assumptions and is a lot more accurate as a result.

Since we proposed our mathematical model, there have also been proposals for using

fluid models to predict how CUBIC and BBR interact. Scherrer et al. [56] used a fluid

model to analyze transient oscillations that can happen when CUBIC and BBR compete

in a bottleneck buffer and what impact that can have on bandwidth fairness between

them. While their model was more accurate than our traditional steady-state model (see

§4), they do not produce any interpretable closed-form equations. They therefore do not

reveal any more insights into how CUBIC and BBR interact than network simulators

and test bed experiments.

2.2.3 Predicting BBR’s future adoption on the Internet

To the best of our knowledge, while there have been several previous works studying

how CUBIC and BBR interact, none of them have applied their insights to predicting

how their differences can drive their future adoption on the Internet. In this respect, we

are the first to apply game theory to predict how BBR’s performance advantage over

CUBIC will evolve - and how this will in turn drive its adoption on the Internet.

That said, game theory has been previously applied to congestion control [57, 58, 59],

albeit in different settings and contexts. Chien and Sinclair were the first to study the

interactions between modified AIMD congestion control algorithms and evaluate the

efficiency of the Nash Equilibrium bandwidth distributions between them [58]. They

showed that the Nash Equilibrium between Reno and Tahoe flows can be efficient in

drop-tail buffers and inefficient with RED-enabled buffers. The main difference between

their work and ours is that their strategies (congestion control algorithms) for the play-

ers (individual flows) are fixed. Chien and Sinclair attempted to calculate the Nash

Equilibrium bandwidth distribution, while we are focused on predicting the Nash Equi-

libria in terms of the distribution of congestion control algorithms. In the remaining

2.3 QUIC 21

two works [57, 59], the focus was on investigating the Nash Equilibrium bandwidth

distributions between two flows running Reno and Vegas.

Overall, our work in studying the interactions between CUBIC and BBR using a

mathematical model and predicting how it could drive BBR’s adoption on the Internet

in the future addresses a research problem that has not been looked into before. While

there have been other mathematical models describing CUBIC and BBR, the state-of-

the-art steady-state model before us [25] had limited accuracy. For this reason, we had

to develop our own steady-state model that had improved accuracy. Because no one had

applied game theory to predict CCA adoption on the Internet before, we also had to

define our own notion of a Nash equilibrium distribution of CCAs on the Internet. We

describe these contributions in more detail in §4.

2.3 QUIC

The widespread adoption of QUIC by major tech companies has inspired numerous

studies in recent years [60, 61, 62, 63, 64]. These works include studies on the effectiveness

of its new mechanisms, interoperability, differences in parameterization, and general

performance.

Comparing gQUIC with TCP. Most of the earlier studies evaluating the per-

formance of QUIC against TCP were done using gQUIC[60], Google’s original version

of QUIC before the IETF QUIC standard was released, as it was the only implemen-

tation available. Langley et al. completed an extensive study on gQUIC’s performance

for Google’s large-scale deployment of QUIC and reported gQUIC’s performance against

TCP CUBIC [60]. Langley et al. reported that gQUIC outperformed TCP in metrics

such as Google Search’s latency, YouTube’s video latency, and YouTube’s video rebuffer

rate. For example, YouTube’s video rebuffer rate was reduced by 18.0% for desktop users

and 15.3% for mobile users when TCP was replaced with gQUIC. A limitation of this

22 Background and Related Work

study is that it measured the performance of specific applications (and not QUIC CCA

implementations) and the results were obtained from proprietary data that is not easily

reproducible. In our work, we study the general transport-layer performance of CCA

implementations for a large number of QUIC stacks and not just gQUIC. Our source

code is available at [33] and our experiments are fully reproducible.

Other gQUIC studies evaluating gQUIC’s performance against TCP mostly used

page-load time measured via controlled experiments as the main metric to compare their

application-layer performance [61, 62, 63]. Carlucci et al. found that gQUIC achieved

higher goodput and smaller page-load times in networks with small buffers or high packet

loss rates [61]. Biswal et al. found that gQUIC outperformed TCP in networks with low

bandwidth, high RTT, or high packet loss rates. Megyesi et al. had similar conclusions,

except that they reported, to the contrary, that TCP performs better in networks with

high packet loss rates. These studies all evaluated the QUIC’s protocol performance

against TCP using application-level metrics without any attempt at root-cause analysis.

Our work is focused on the transport-layer performance of the QUIC CCAs and we show

that our methodology provides hints that allow us to (i) deduce potential reasons for

differences in behavior, and (ii) to verify if modifications made would make a QUIC

CCA implementation more conformant to the reference kernel implementation.

Another study on gQUIC by Kakhki et al. focused on evaluating gQUIC’s transport-

layer performance against TCP [64]. In their study, Kakhki et al. performed a root-cause

analysis using execution traces captured by instrumenting gQUIC’s source code. They

discovered that gQUIC’s default parameter values were not tuned and proceeded to

calibrate their gQUIC implementation in their experiments so that they would perform

similarly to those deployed in production. Kakhki et al. highlighted that this calibration

was not done in prior studies and led to them wrongly concluding that gQUIC would

under-perform in high bandwidth networks.

Kakhki et al. observed that the congestion control implementation in QUIC was likely

2.3 QUIC 23

different from TCP despite both of them implementing the same CUBIC CCA because

the gQUIC flow was observed to have twice the bandwidth of a competing CUBIC flow at

the same bottleneck link. They concluded that this is because gQUIC’s CUBIC increased

its congestion window (cwnd) more frequently and by a larger amount than TCP CUBIC.

Although Kakhki et al. showed that there was a deviation and even found the root cause,

those findings are not relevant today as the QUIC standard published by IETF (IETF

QUIC) has many significant differences compared to the old gQUIC standard. Moreover,

the QUIC ecosystem has grown much larger and includes many more stacks. At some

level, this limitation also extends to the results of the above studies. To the best of our

knowledge, our work is the most comprehensive measurement study covering the largest

number of open-sourced QUIC implementations to date.

Evaluating IETF QUIC implementations. There are other more recent studies

that evaluated IETF QUIC stacks, but most of them have limited scope, and focus on

application-layer metrics [65, 66, 67]. Saif et al. compared the quiche stack against TCP

and found that quiche QUIC has greater average throughput but worse user quality of

experience metrics as measured by the Lighthouse tool [67, 68]. A key limitation of these

studies is that they only report the results for a single QUIC stack. As demonstrated

in our latest study, QUIC’s performance can differ significantly across implementations

and these differences are often artifacts of the implementations and not a result of the

QUIC protocol.

2.3.1 Speciation in QUIC Congestion Control

To the best of our knowledge, Marx et al. were the first to report speciation in different

QUIC stacks [69]. Their study highlighted differences in implementation details of 15

IETF QUIC stacks. These differences were uncovered by analyzing the inner workings

of the QUIC stacks through visualizations produced by the Qvis tool. They found sig-

nificant differences in domains where the QUIC standard had minimal specifications,

24 Background and Related Work

i.e. congestion control and flow control. Differences were found even for parameters

that were specified in the QUIC standard. For example, 3 of the stacks did not follow

the QUIC standard’s initial congestion window value specification and 10 of the stacks

did not follow the QUIC standard’s recommendation of 2 for the acknowledgment fre-

quency. Marx et al. did not investigate how the performance differences arose from these

implementation deviations. More recently, we had earlier reported significant deviations

between the different QUIC implementations of existing congestion control algorithms

and their respective kernel implementations for 4 common QUIC stacks [4].

Overall, bulk of the literature that benchmarks and tests QUIC stacks generally

concentrates on the performance of the transport stack as a whole. In general, because

most stacks re-implement standard congestion control algorithms, congestion control in

QUIC was a largely neglected area before our work in 2022 [4]. In §5, we discuss in detail

about how this is a significant research gap and propose ways to detect and correct for

speciation in QUIC implementations of standard congestion control algorithms.

Chapter 3
The Great Internet TCP Congestion

Control Census

Given how big a departure BBR represents from the design of traditional loss-based

CCAs, we wanted to take stock of the Internet’s congestion control landscape 3 years

since its first deployment in 2016. Since the last measurement study before ours was

conducted before BBR was deployed on the Internet, past measurement methodologies

do not work well for identifying non-window-based CCAs like BBR on the Internet.

To this end, we had to develop a new measurement tool, called Gordon, to measure

and classify the CCAs run by the Alexa Top 20,000 websites on the Internet. In this

chapter, we present the motivation behind this measurement study, Gordon’s design,

and a snapshot of the Internet’s CCA landscape in 2019.

3.1 Background

Over the past 40 years, TCP congestion control has evolved to adapt to the changing

needs of the users and to exploit improvements in the underlying network. Most recently,

in 2016, Google proposed and deployed a new TCP variant called BBR [22] (Bottleneck

26 The Great Internet TCP Congestion Control Census

Bandwidth and Round-trip propagation time). BBR represents a major departure from

traditional congestion-window-based congestion control. Instead of using packet loss

as a congestion signal, BBR uses estimates of the bandwidth and round-trip delays

to regulate its sending rate. BBR has since been introduced in the Linux kernel [70]

and deployed by Google across its data centers. As the TCP ecosystem has changed

significantly since the last study [46] done in 2011, it is timely to conduct a new census

to understand the latest distribution of TCP variants on the Internet.

The goals of our TCP census are relatively modest. We aim to (i) understand how

the distribution of previously identified variants has changed since 2011; (ii) develop a

method to identify BBR in existing websites; and (iii) determine the proportion of un-

documented TCP variants if any. The final goal of our approach represents a significant

departure from previous studies, which assumed a fixed set of known TCP variants and

attempted to classify all the measured websites as one of the known variants.

To this end, we designed Gordon, a tool that allows us to measure the exact con-

gestion window (cwnd) corresponding to each successive RTT in the TCP connection

response of a congestion control algorithm “in the wild.” While rate-based TCP variants

do not maintain a congestion window, they typically maintain a maximum allowable

number of packets in flight [22], which we can measure as the effective congestion win-

dow for each RTT. To compare this response to that of known variants, we created

a localized bottleneck where we introduced a variety of network changes: loss events,

bandwidth change, and increased delay. We also normalize all measurements by RTT.

An offline classifier is then used to identify the TCP variant based on the cwnd trace over

time. By decoupling measurement from classification unlike prior studies [19, 20, 21],

our approach allows us to not only identify known TCP variants but also detect new

undocumented variants. Our approach also makes it possible to improve the accuracy of

the classifier without repeating the relatively expensive measurements, if new network

profiles are not required for the improved classifier.

3.1 Background 27

We used Gordon to measure the 20,000 most popular websites according to the Alexa

rankings [71]. The following are our key findings:

1. Our results suggest that, as expected, CUBIC is currently the dominant TCP

variant on the Internet and is deployed at 36% of all the classified websites, which

is an increase from what was reported in the last study in 2011 (§3.3.5).

2. The rate of BBR adoption over the past 3 years since its release has been phenom-

enal. BBR (together with its Google variant) is currently the second most popular

TCP variant deployed at 22% of the classified websites (§3.3.5).

3. While BBR has a share of only 22% by website count, we estimate that its present

share of total Internet traffic volume already exceeds 40%. This proportion will

almost certainly exceed 50% if Netflix and Akamai also decide to adopt BBR

(§3.3.3).

4. The assumption that TCP variants “in the wild” will come from a known set is not

true anymore. In particular, we found that Akamai has deployed a unique loss-

agnostic rate-based TCP variant on some 6% of the Alexa Top 20,000 websites

(§3.3.4).

Since our key design principle is to look for generic characteristics such as reaction

to bandwidth change, delay and different types of loss, Gordon can be extended to

identify new future variants that are not known today. Given that we expect the TCP

congestion control landscape to undergo rapid and significant change soon, we do not

think that the previous approach of taking a snapshot every 10 years is good enough.

We are in the process of enhancing and automating Gordon into a web-service that can

capture a continuous view of the Internet’s ongoing transition to a new era of rate-based

congestion control. We hope that the current shift in congestion control philosophy and

our work in uncovering new undocumented rate-based variants would draw attention

towards studying the interaction between cwnd-based and rate-based protocols at scale.

28 The Great Internet TCP Congestion Control Census

The rest of the chapter is organized as follows: In §3.2, we describe the design and

implementation of Gordon’s measurement and classification techniques. In §3.3, we first

evaluate the measurement accuracy of Gordon and then present detailed results of using

Gordon to identify TCP variants for the Alexa Top 20,000 websites [71] on the Internet.

In §3.4, we describe the practical difficulties we faced, the current limitations of Gordon,

and future directions to improve Gordon for understanding the long-term evolution of

Internet congestion control. Finally, we conclude in §3.5.

3.2 Methodology

Gordon emulates a local bottleneck and tracks the evolution of the effective congestion

window (cwnd) (see §3.2.1) of the probed TCP variant while changing the available

bandwidth, increasing the delay and introducing packet losses in a controlled manner

(see §3.2.2). In the case of rate-based protocols that do not use a cwnd for rate regulation,

we track the unacknowledged packets in flight as the cwnd of the protocol. The key

insight behind our design is that any congestion control protocol must ultimately react

to changing networking conditions. We then try to identify the TCP variant from the

observed cwnd response via offline processing (see §3.2.3).

Gordon targets identifying congestion control variants that have been deployed in

the Windows and Linux kernels. However, since it operates as an interceptor, it is not

limited to measuring only TCP behavior and can be used to measure UDP traffic as

well. In this work, we concentrate on making measurements on TCP web traffic since

TCP supports an overwhelmingly large proportion of Internet traffic [10].

3.2.1 Measuring cwnd over time

At a high level, we want to determine the evolution of a target congestion control al-

gorithm’s cwnd. We note that the cwnd is essentially the maximum number of unac-

3.2 Methodology 29

knowledged packets in flight as allowed by the sender’s algorithm. Therefore, a simple

way to measure the evolution of the cwnd is to withhold acknowledgments from a TCP

receiver (after the handshake) and count the number of packets received until an RTO

is triggered. We refer to this first congestion window as C1. Next, we restart a new

connection and this time, we will send C1 acknowledgments and stop. The total number

of packets received before a re-transmission would be the total number of packets for

the first 2 RTTs, or C1 + C2. In principle, by repeating this process and progressively

measuring C1 + C2 + · · · + Cn, we can determine the cwnd for the nth RTT and sys-

tematically track the evolution of cwnd over time. It should be noted here that this

effectively normalizes our cwnd measurements by RTT. We employ this packet counting

methodology with TCP SACK disabled. We resort to restarting connections because

we found that previous approaches that do similar cwnd-based measurements using de-

layed acknowledgments do not work for rate-based variants like BBR. These previous

techniques typically use the bloated RTTs caused by the delayed ACKs as ‘separators’

to help them differentiate between different cwnd measurements for different RTT’s in

a single connection. This is not possible with rate-based variants like BBR that fill the

entire network pipeline, and thus render this delayed ACK approach to measuring cwnd

untenable.

Unfortunately, we found that a naïve packet counting strategy does not work well on

the real Internet for two reasons. First, most of the available web pages are relatively

small and we would not be able to plot any meaningful evolution of the cwnd. Second,

the naïve approach is very sensitive to random packet losses.

MTU sizing and crawling for large web-pages. Since we measure cwnd in

packets, a straightforward way to obtain more packets from an HTTP/HTTPS page

download is to reduce the MTU size of the connection. IPv4 [72] specifies a minimum

MTU size of 68 bytes. However, we found that setting an MTU size of 68 bytes often

resulted in some connections failing without reason. Through repeated trials for all the

30 The Great Internet TCP Congestion Control Census

Accepted Packets Dropped Packets

= packet drops on the Internet = Retransmission

Accept Window
Correct cwnd
measurement

= Noise

Negative noise:

Positive noise:

Figure 3.1: Possible scenarios for random losses.

websites in the Alexa Top 20,000 list, we found that while an MTU of 68 bytes works

for most websites, some accept only connections with larger MTU sizes. To address this

issue, Gordon uses binary search to determine the minimum MTU size for a website

and performs the measurement using this MTU size. This acceptable MTU size search

is done before every measurement since the minimum acceptable MTU size could vary

depending on the underlying Internet path, which could change over time.

However, reducing the MTU size was often not enough to yield a sufficiently long

trace to identify the TCP variant. Thus, we first used a crawler to determine the available

pages for each website (to the best of our ability) and used the largest of these pages to

perform our measurements. Using our final network profile (see §3.2.2), Gordon needs

about 80 packets for 30 RTTs to be able to accurately plot cwnd evolution graphs for

more complicated algorithms like CUBIC. With most websites accepting 68 -byte MTUs,

this would mean an ideal web-page size for Gordon would be at least 165 KB.

Handling Random Packet Losses. In Fig. 3.1, we present the various scenarios

when we observe packet loss in our measurements. We note that most packet losses

3.2 Methodology 31

 0

 50

 100

 150

 0 5 10 15 20 25 30 35 40 45 50
A

v
g

 E
rr

o
r

(P
k
ts

)

Number of trials per RTT

Figure 3.2: Sensitivity analysis for repeated measurements.

result in a lower estimate (negative noise). It is only when the first re-transmitted

packet is lost that we end up counting the entire re-transmitted window twice and have

positive noise. The latter is easily eliminated if we stop counting packets when we see

the re-transmission of any packet in the current cwnd measurement window.

We eliminate negative noise caused by random losses by repeating the measurement

for each congestion window several times and taking the maximum window measurement

as the cwnd. In Fig. 3.2, we plot the measurement noise from random losses while

measuring various web-servers on the Internet (both real hosts on the Internet and

controlled servers set up on AWS) for different number of trials. We see that 15 trials

per cwnd measurement are sufficient to eliminate negative noise. Here, by ‘noise’ we

mean the cumulative sum of the difference between the measured and ground truth

cwnd values. In this experiment, the ground truth was taken to be the measurements

made over 50 trials. In addition to this, all our experiments were done over wired links

to minimize the possibility of random packet losses.

In Fig. 3.3, we plot the window measurements for reddit.com using 15 trials per cwnd

measurement. The red points are the individual window measurements. We see that

taking the maximum over 15 trials per window measurement are sufficient to provide us

with a relatively smooth cwnd evolution curve. The small cwnd during the first 5 RTTs

is the result of the SSL certificate exchange protocol.

32 The Great Internet TCP Congestion Control Census

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40 45 50
c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Single trials
Maximum cwnd

Figure 3.3: cwnd measurement for reddit.com.

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

c
w

n
d

 (
p

a
c
k
e

ts
)

RTT #

loss at 160 pkts
loss at 80 pkts
loss at 40 pkts

Figure 3.4: Evolution of CUBIC cwnd for different packet drops.

3.2.2 Designing a Network Profile

Our goal is to identify TCP variants from the evolution of their cwnd over time. Con-

ceptually, we described a way to do this measurement in §3.2.1. However, we need a way

to normalize the measurements so that they can be compared to base measurements of

known TCP variants. Since we have full control over the network bottleneck, we can

impose a common network profile on all the websites. In particular, we introduce a

packet loss event and a bandwidth change event at the network bottleneck and observe

the response of the probed TCP algorithm.

Packet Loss. Most congestion control algorithms enter their Congestion Avoidance

phase when they see a packet loss. The general assumption is that packet losses signal

congestion due to buffer overflow. Since we control the network bottleneck, we can decide

exactly when a packet loss should happen.

3.2 Methodology 33

Through measurements, we found that most connections have a starting window

size of 10 packets, as suggested by Chu et al. [73, 74]. This means that for a typical

Slow Start, we can expect the first few congestion windows to be 10, 20, 40, 80, etc. In

Fig. 3.4, we plot the evolution of cwnd for a controlled web server running CUBIC while

Gordon emulates a drop at different stages of a connection - namely when the measured

cwnd first reaches more than 40, 80 and 160 packets. We evaluate CUBIC since it has

relatively complex cwnd evolution in the Congestion Avoidance phase. Fig. 3.4 shows

that if the packet drop occurs too early, the subsequent cwnd is relatively small and

it might be hard to discern between the curve shapes after the packet drop. On the

other hand, if the packet drop is too late, the window size becomes very large and we

need very large flows (large web pages) to make a measurement that captures the entire

CUBIC curve. We found that inflicting a packet loss after the cwnd reaches 80 packets

achieves a good trade-off between these two concerns. We call this value the Packet

Drop Threshold. Except for this inflicted packet drop meant to “force” cwnd-based TCP

variants into Congestion Avoidance phase, no other packets are explicitly dropped by

Gordon during the measurement. Our buffer is big enough to avoid buffer overflows.

Regulating the Bottleneck Bandwidth. Recent rate-based congestion control

algorithms like BBR do not back off when they encounter a packet loss. Even so, these

algorithms still cap the maximum number of packets in flight. In particular, BBR limits

the number of packets in flight to twice the estimated bandwidth-delay product (BDP).

To characterize such algorithms, we vary the bottleneck bandwidth and observe how the

measured cwnd changes when the bottleneck bandwidth changes.

Since our methodology requires us to limit the sender’s cwnd to about 100 packets

to make the flows last long enough, we emulate a BDP of 50 packets. We achieve this

BDP by maintaining an RTT of 100 ms between the sender and the receiver and limiting

the initial bottleneck bandwidth to 500 packets/s for the first 1,500 packets received.

This rate is reduced to 334 packets/s for the next 1,500 packets before the bandwidth

34 The Great Internet TCP Congestion Control Census

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50

c
w

n
d

 (
p

a
c
k
e

ts
)

RTT #

Packet Loss
BDP

Figure 3.5: How BBR reacts to the bandwidth changes.

is restored to 500 packets/s. This behavior can be seen in Fig. 3.5, where we show the

available bandwidth in terms of the BDP for the flow (since the delay is a constant).

We can see that the cwnd for a controlled web server running BBR tracks the available

bandwidth at twice the BDP emulated by Gordon after a measurement delay of 10

RTTs. We decided on changing the BDP every 1,500 packets because it would result in

a period of 15 to 20 RTTs and works for the general file sizes in our sampled websites.

This change in bandwidth also allows us to identify other rate-based variants that may

react to a change in bottleneck bandwidth but track the emulated BDP differently.

Final Network Profile. In summary, we inflict a packet drop for the first window

where the number of packets received is strictly larger than 80. The available bandwidth

of the bottleneck alternates between 500 packets/s and 334 packets/s after every 1,500

packets received. In Figures 6.4, we plot the responses for some common congestion

control algorithms as measured by Gordon while applying the final network profile.

We note that except three pairs of congestion control algorithms (Veno/Vegas, New

Reno/HSTCP and CTCP/Illinois) we are generally able to identify the TCP variant

from the shape of the curve within the first 30 RTTs. These shapes are deterministic

and Gordon is consistently able to record traces like the ones in Figures 6.4 over multiple

runs. These shapes show slight deviations when measured over the Internet, and their

impact on our classification accuracy is discussed in § 3.3.1.

In the future, if there are deployments of other congestion control variants, additional

3.2 Methodology 35

network profiles can easily be added to Gordon to identify them. In this work, we limit

ourselves to using a single network profile because of the cost associated with measuring

each website.

3.2.3 Classification

The output from Gordon is a plot of estimated cwnd versus time (RTT #) of the target

host in response to our final network profile. It remains for us to determine the TCP

variant from the shape of the graphs. For measurements that are sufficiently long and

yield enough data, we expect the shapes to be similar to those in our control tests.

We use a simple decision-tree-based approach to identifying variants over the Inter-

net (see §3.3.1). One of the benefits of our approach of decoupling measurement and

classification is that other researchers are free to swap our classifier with a different clas-

sifier. We have made the source code for Gordon and our measurement traces publicly

available (§3.6).

To compute the shape, we first identify the back-off points in the trace that signify

the end of Slow Start and the beginning of the Congestion Avoidance phase. Then the

traces are treated differently based on the emulated network stimulus that caused this

back-off.

Case 1: Back-off After Packet Loss. We divide the resulting Congestion Avoid-

ance phase into 3 regions (as shown in Fig. 3.7).

1. Catch-Up: This region corresponds to the region right after the algorithm backs

off to a lower cwnd after encountering a packet loss.

2. Steady: This is the region where cwnd demonstrates linear or no growth.

3. Probe: This is the region when the algorithm tries to probe for more available

bandwidth by increasing the cwnd.

36 The Great Internet TCP Congestion Control Census

 0

 40

 80

 120

 160

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(a) CUBIC

 0

 40

 80

 120

 160

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(b) BBR

 0

 20

 40

 60

 80

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(c) BIC

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30
c
w

n
d
 (

p
a
c
k
e
ts

)
RTT #

Packet Loss
BDP

(d) HTCP

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(e) Scalable

 0

 20

 40

 60

 80

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(f) New Reno

 0

 20

 40

 60

 80

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(g) Illinois

 20

 40

 60

 80

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(h) CTCP

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(i) YeAH

 0

 20

 40

 60

 80

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(j) Vegas

 20

 40

 60

 80

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(k) Veno

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(l) Westwood

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(m) Highspeed

Figure 3.6: cwnd evolution of CCAs in the Linux kernel in response to the final network
profile.

3.2 Methodology 37

C1

C2

C3

C4

= -Cn Cn-1

= /C1 C2

Catch up Steady Probe

backoff

nα
β

Figure 3.7: Calculating α and β from the 3 regions.

In addition to this, we also calculate two features common to most loss-based congestion

control algorithms – α and β. Where Ci is the cwnd value at the ith RTT of the

Congestion Avoidance phase,

1. αn = Cn−Cn−1, n ≥ 3 is the increase in cwnd between 2 successive measurements

by Gordon for all RTTs after back off (see Fig. 3.7).

2. β = C2
C1

, is the proportion of back-off after packet loss.

Based on the division of the Congestion Avoidance phase into 3 regions, we found

that the curves for the known cwnd-based TCP variants would take one of the 4 shapes

shown in Figures 3.8a - 3.8d. We can computationally classify a curve into one of the 4

shapes based on the change in gradient (dα
dt) for each region and by determining whether

the steady region exists, as shown in Table 3.1.

Once we have the shape and the values of αi and β, we can determine the variant from

Table 3.2 by computing ᾱ, the mean of αi. Many of the values in Table 3.2 were obtained

from the papers [14, 15, 16, 17, 22, 43, 45, 75, 76] describing the various algorithms.

However, we found some difference when we measured the references traces obtained in

our network testbed. Some adjustments were then made to ensure that the values of β

and ᾱ reflected what we observed in our traces. Algorithms that react to loss, but cannot

be classified into one of these shapes are classified as Unknown. We note that CUBIC [16],

BIC [15] and HTCP [75] can be identified by shape alone. Scalable [76], Illinois [45],

38 The Great Internet TCP Congestion Control Census

(a) CUBIC shape (b) BIC shape (c) HTCP shape (d) Linear shape

Figure 3.8: Shapes identified by Gordon’s classifier.

Table 3.1: Shape Classification.

Regions
Shape Catch-up Steady Probe

CUBIC dα
dt < 0 ✓ dα

dt > 0
BIC dα

dt < 0 ✓ -
HTCP - - dα

dt > 0
Linear - ✓ -

CTCP [17], YeAH [42], New Reno [14], Veno [44], Westwood [77] and Vegas [43] all

increase their cwnd linearly during Congestion Avoidance and are very similar in shape.

While most variants can be differentiated by their values of β and ᾱ (slope of the cwnd

graph in the Congestion Avoidance phase), Gordon is not able to differentiate between

three pairs of algorithms - CTCP and Illinois, New Reno and HSTCP and between Vegas

and Veno. In the Congestion Avoidance phase, both Vegas and Veno initially increase

their congestion window by 1 every RTT (α = 1) before having more or less constant

cwnd and are therefore indistinguishable when they interact with our network profile.

Similarly, both CTCP and Illinois evolve their cwnd values using similar functions after

seeing a packet loss. HSTCP and New Reno both back-off to half their cwnd on seeing

a packet loss and increment their cwnd by 1 every RTT in Congestion Avoidance mode.

Therefore, Gordon classifies them together as ‘Vegas/Veno’, ‘CTCP/Illinois’, and ‘New

Reno/HSTCP,’ respectively. It remains as future work to introduce a second stage to

disambiguate between these pairs (§3.4).

Case 2: No Back-off. For variants that do not back-off after a packet loss, we try

3.2 Methodology 39

Table 3.2: Known TCP Variant Classification.

Shape β ᾱ Variant
CUBIC > 0.66 - CUBIC

BIC > 0.66 - BIC
HTCP > 0.5 - HTCP

Linear

> 0.8 = 1.01 Scalable
> 0.8 [1, 1.01] YeAH
> 0.5 N.A. CTCP/Illinois

(0.2, 0.5] < 1 Vegas/Veno
(0.2, 0.5] = 1 New Reno/HSTCP
≤ 0.2 = 1 Westwood

Stable regions = 2×BDP BBR

to either classify them as BBR or an unknown variant. Even though BBR is a rate-based

algorithm, it maintains a cwnd that is equal to twice the BDP. Also, since BBR uses the

maximum receive rate in the past 10 RTTs for calculating it’s BDP [78], we expect to

see a drop in cwnd corresponding to our network profile’s drop in bandwidth delayed by

10 RTTs.

Therefore, to identify if these unique behaviors are present in a measurement, the

classifier starts by identifying stable regions that show little change in cwnd as shown in

Fig. 3.9. This is because since our emulated BDP is a step function, we expect BBR’s

cwnd to trace this step function as well. We then compare these cwnd stable regions

with the emulated BDP. If the cwnd is twice the emulated BDP and the website reduces

its cwnd 10 RTTs after a bandwidth change was emulated, the algorithm is classified as

BBR. If not, it is classified as Unknown.

3.2.4 Implementation

In Fig. 3.10, we present an overview of Gordon’s system design. To inflate the RTT

between our measurement server and the remote host (as discussed in §3.2.2), Gordon is

run inside a Mahimahi delay shell [79]. We use wget [80] to emulate a browser making

40 The Great Internet TCP Congestion Control Census

0

40

80

120

0 5 10 15 20 25 30

N
o
.
o
f
p
a
c
k
e
ts

RTT #

Emulated BDP

 Stable

Regions

c
w

n
d
 (

p
a
c
k
e
ts

)

Packet loss

Figure 3.9: Identifying stable regions for loss-agnostic flows.

Interceptor

Accept

Drop

Client (wget)

Mahimahi Delay shell

TCProbe
N

F
Q

u
e
u

e

Incoming

 tra

Remot

tra c

Gordon

Figure 3.10: Gordon Design.

an HTTP/HTTPS GET request to the target web server. The incoming HTTP response

packets are redirected to an NFQueue [81] using a Linux Netfilter redirect rule.

The interceptor module of Gordon dequeues packets from the NFQueue and selec-

tively delivers them to wget or drops them. Gordon controls the rate at which packets

are dequeued from the NFQueue to localize the bottleneck of the connection and to

regulate the bottleneck bandwidth (as described in §3.2.2). The interceptor module is

implemented in about 350 lines of C code. The final output consists of a trace of the

maximum cwnd size observed for each RTT period, which is processed offline by a clas-

sifier written in 440 lines of Python code. For each website in the Alexa Top 20,000

list [71], we used a web crawler written in about 300 lines of Python code to obtain

3.3 Results 41

URLs to the largest web pages/objects that it could find on the website.

Because of the scale of our measurements, Gordon was also extended into a web ser-

vice. This web service consisted of a single centralized server responsible for aggregating

measurements made by 250 clients (workers) distributed across 5 regions (viewpoints) -

Ohio, Sao Paulo, Paris, Mumbai, and Singapore. These workers requested jobs at the

granularity of a single cwnd measurement for a website, allowing us to spread our con-

nections over time and seem less aggressive to a website. Each host was measured five

times (once from each viewpoint) while the centralized server tracked these five individ-

ual measurements separately. This web service was implemented in about 2,050 lines of

TypeScript code.

At the moment, we have made Gordon and our measurements available on GitHub

(see §3.6). We are still working to make the web service available as a live dashboard of

the TCP variant distribution on the Internet.

3.3 Results

We measured and classified the top 20,000 websites on the Internet based on their Alexa

ranking [71]. These measurements were made between 11 July 2019 and 17 October

2019 (unless specified). The distribution of the file sizes obtained using a crawler (see

§3.2.1) for the measurements is shown in Fig. 3.11. We can see that about 18% of the

websites return pages smaller than the ideal page size of 165 KB (§ 3.2.1). We were able

to classify the variants for some of these websites with page sizes smaller than 165 KB.

We refer to the remaining websites that cannot be classified as ‘Short flows’.

We also found that about 1,302 websites in the Alexa Top 20,000 list did not respond

to wget requests. These websites had DDoS protection from Cloudflare or Google’s

ReCaptcha, and therefore did not respond to repeated wget requests. A small fraction

of the websites also had invalid URLs that did not even open on a web browser. Upon

42 The Great Internet TCP Congestion Control Census

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 1 100 10000

C
D

F
File Size (KB)

larger than

165 KB

Figure 3.11: CDF of file sizes used in measurements.

further investigation, we found that these URLs were links to phishing websites that had

been visited so often that they had made it to the Alexa Top 20,000 list. Collectively,

we consider these websites to be ‘Unresponsive’.

3.3.1 Verification of Measurement Accuracy

First, we validate the accuracy of our approach by setting up a physical test web server in

Singapore and performing measurements from AWS EC2 instances in 9 locations (view-

points): Paris, London, Ireland, Sydney, Seoul, Mumbai, Virginia, Oregon, and Ohio.

The RTTs for the measurements ranged from 59 ms to 255 ms. To provide the ground

truth, the test server runs one of the known TCP variants, which was then measured

5 times from each viewpoint, to give a total 45 measurements for each variant. Later,

the configuration was reversed, with the AWS instances running a known variant and

acting as web servers while a local server made measurements. In Table 3.3, we present

the confusion matrix for these 90 measurements (per algorithm). The key takeaway is

that for known variants, the accuracy is high and false positives are relatively rare. Note

that the figures in Table 3.3 reflect the accuracy of single measurements. If we take

the majority result across the five measurements from an individual viewpoint, we can

achieve 100% classification success. The errors are caused by noisy measurements arising

from Internet traffic.

3.3 Results 43

Table 3.3: Classification accuracy.
Classified as

BBR
CUBIC

BIC HTCP
Sca

lab
le

YeA
H

Vega
s/V

eno

New
Reno

/H
ST

CP

CTCP/Il
lin

ois

West
woo

d

Unk
no

wn

BBR 98% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2%
CUBIC 0% 95% 0% 0% 0% 0% 0% 0% 0% 0% 5%
BIC 0% 9% 91% 0% 0% 0% 0% 0% 0% 0% 0%
HTCP 0% 0% 0% 95% 0% 0% 0% 0% 0% 0% 5%
Scalable 0% 0% 0% 0% 98% 0% 0% 0% 0% 0% 2%
YeAH 0% 0% 2% 0% 0% 98% 0% 0% 0% 0% 0%
Vegas/Veno 0% 0% 0% 0% 0% 0% 94% 6% 0% 0% 0%
New Reno/HSTCP 0% 0% 0% 0% 0% 0% 0% 96% 0% 0% 4%
CTCP/Illinois 0% 0% 3% 0% 0% 0% 0% 0% 94% 0% 3%
Westwood 0% 0% 0% 0% 0% 0% 0% 2% 0% 98% 0%

3.3.2 TCP variants on the Internet

Each target website from Alexa Top 20,000 was measured from AWS EC2 instances

in the US (Ohio), Europe (Paris), South America (Sao Paulo) and Asia (Mumbai and

Singapore). Our measurements were made from different viewpoints to help us get the

best view of a website’s congestion control behavior (since all websites are not hosted

by CDNs). In addition, we kept re-measuring websites that we were not able to classify

as a known variant. These iterative measurements were stopped only when a re-run did

not further improve the number of classified websites.

Table 3.4 shows the distribution of TCP variants on the Internet as measured from

these viewpoints. As expected, we found that for certain websites, some viewpoints

gave less noisy measurements compared to others. This is the only reason for the slight

discrepancies between numbers reported from different viewpoints. Out of the 20,000

target websites, a total of 13,739 websites were classified similarly from all viewpoints.

Out of the remaining 6,261 websites, 1,424 websites were successfully classified from

44 The Great Internet TCP Congestion Control Census

Table 3.4: Distribution of variants as measured from different viewpoints on the Inter-
net.

Variant Ohio Paris Mumbai Singapore Sao Paulo
Sites Share Sites Share Sites Share Sites Share Sites Share

CUBIC 5,966 29.83% 5,893 29.47% 5,950 29.75% 5,930 29.65% 5,966 29.83%
BBR 3,297 16.49% 3,414 17.07% 3,378 16.89% 3,386 16.93% 3,393 16.96%
BBR G1.1 167 0.84% 167 0.84% 167 0.84% 167 0.84% 167 0.84%
YeAH 1,102 5.51% 1,092 5.46% 1,081 5.40% 1,115 5.57% 1,112 5.56%
CTCP/Illinois 1,085 5.42% 1,054 5.27% 1,092 5.46% 1,082 5.41% 1,097 5.48%
Vegas/Veno 556 2.78% 557 2.78% 556 2.78% 551 2.75% 548 2.74%
HTCP 543 2.71% 551 2.75% 544 2.72% 541 2.70% 500 2.50%
BIC 169 0.85% 166 0.83% 161 0.80% 165 0.83% 165 0.83%
N.Reno/HSTCP 154 0.77% 151 0.75% 154 0.77% 147 0.73% 151 0.75%
Scalable 36 0.18% 37 0.18% 37 0.18% 37 0.18% 36 0.18%
Westwood 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%
Unknown 4,143 20.71% 4,132 20.66% 4,096 20.48% 4,105 20.52% 4,074 20.37%
Short-flows 1,480 7.40% 1,484 7.42% 1,482 7.41% 1,472 7.36% 1,489 7.44%
Unresponsive 1,302 6.51% 1,302 6.51% 1,302 6.51% 1,302 6.51% 1,302 6.51%
Total 20,000 100% 20,000 100% 20,000 100% 20,000 100% 20,000 100%

some viewpoint and 3,535 websites could not be classified from any viewpoints.

The distribution of variants as measured from these viewpoints shows the same gen-

eral trend of CUBIC [16] being the dominant congestion control variant in terms of

website count, with BBR [24] coming in second. In Table 3.5, we show the consolidated

numbers for all websites following the rule that if a website has been identified to be

using some known congestion control variant in any of the regions, it is considered to be

running that congestion control variant. There were no classification conflicts between

different viewpoints for these 1,424 successfully classified websites. In other words, we

found no evidence for websites deploying different congestion control algorithms in dif-

ferent regions.

Google’s custom version of BBR. Gordon discovered that some Google-owned

domains (167, including YouTube) were using a modified version of BBR that reacted

differently to packet loss compared to vanilla BBR (see Fig. 3.12b). This difference

was first observed in February 2019. Before that, we had observed traces resembling

vanilla BBR (Fig. 3.12a). While we initially suspected that this new variant was BBRv2,

3.3 Results 45

 0

 40

 80

 120

 160

 0 10 20 30

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(a) youtube.com Dec ’18.

 0

 40

 80

 120

 160

 0 10 20 30 40 50

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(b) youtube.com Feb ’19.

 0

 40

 80

 120

 160

 0 10 20 30 40 50

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(c) BBRv2, Alpha release, July
’19.

Figure 3.12: The evolution of BBR.

we checked the cwnd evolution of BBRv2 that was recently released in July 2019 (see

Fig. 3.12c) and found that it was not. We thus refer to this variant as BBR G1.1 in

Tables 3.4 and 3.5. It should be noted here that this anomalous behavior was only

observed for Google websites. None of the other websites identified to be using BBR

showed this anomalous behavior even after repeated measurements. They all deployed

vanilla BBR.

We have confirmed our findings about BBR with Google. In particular, Google

is frequently running experiments and testing refinements to BBR. Google currently

runs a slightly modified version of BBRv1 that has a gentler reaction to packet loss

than the open-source BBRv1. This experimental variant (BBR G1.1) was meant as an

incremental step toward BBRv2. However, BBR G1.1 was deployed in late 2017, which

does not explain our observation of a trace resembling vanilla BBR from Google websites

in December 2018. We have thus been measuring Google sites repeatedly and found that

we still see traces with the shape shown in Fig. 3.12a occasionally. Hence, it is possible

that Gordon occasionally fails to detect the drop in cwnd for BBR G1.1 immediately

after a packet loss event from time to time. At some level, this is not surprising since

BBR does not actively maintain a cwnd like traditional cwnd-based TCP variants.

46 The Great Internet TCP Congestion Control Census

Table 3.5: Distribution of variants.

Variant Websites Proportion
CUBIC [16] 6,139 30.70%
BBR [22] 3,550 17.75%
BBR G1.1 167 0.84%
YeAH [42] 1,162 5.81%
CTCP [17]/Illinois[45] 1,148 5.74%
Vegas [43]/Veno [44] 564 2.82%
HTCP [75] 560 2.80%
BIC [15] 181 0.90%
New Reno [14]/HSTCP [82] 160 0.80%
Scalable [76] 39 0.20%
Westwood [77] 0 0.00%
Unknown 3,535 17.67%
Short flows 1,493 7.46%
Unresponsive websites 1,302 6.51%
Total 20,000 100%

3.3.3 Traffic Volume & Popularity

We believe that the distribution of TCP variants by pure website count in Table 3.5

does not present the full picture.

Understanding Traffic by Volume. In Table 3.6, we present Internet traffic vol-

ume data by Sandvine [10]. Based on the reported Internet traffic volume, we expect

BBR variants to already contribute at least 40% of the global Internet traffic. Dur-

ing our measurements, we found that Netflix had switched from CUBIC to BBR in

early March 2019, only to switch back to CUBIC in April 2019. We note that Google

recently announced that Netflix is currently experimenting with BBR [26]. We also

contacted Netflix and were told that the Netflix website was hosted on AWS. Netflix

however uses different protocols depending on the context, and that most of their video

streaming traffic is delivered via their Open Connect Appliances running FreeBSD’s New

Reno with RACK [83] extensions. The reason for choosing New Reno over CUBIC was

3.3 Results 47

Table 3.6: Excerpt of website traffic share (source: Sandvine [10]).

Site Downstream traffic share Variant*

Amazon Prime 3.69% CUBIC
Netflix 15% CUBIC
Netflix Video New Reno+

YouTube 11.35% BBR G1.1
Other Google sites 28% BBR G1.1
Steam downloads 2.84% BBR
* as measured on servers serving static HTTP/HTTPS pages.
+ as informed by Netflix, not measured by Gordon.

that the Netflix team felt that the New Reno stack was more mature and that improv-

ing loss-detection/loss-recovery heuristics from RACK would be more helpful for their

chunked-delivery use case. We were informed by the Akamai team that Akamai would

be deploying BBR G1.1 on more of their hosted sites in the near future. If Netflix and

Akamai does do the switch to BBR, BBR and its variants’ traffic share on the Internet

would increase to well above 50%.

Understanding Traffic by Popularity. Similar trends can also be observed if

we consider the popularity of the websites. In Fig. 3.13, we plot the distribution of the

identified variants for the top-k sites. We see that BBR is the most widely deployed vari-

ant among the top 250 websites, accounting for 25.2% of all hosts. Another interesting

observation was that BBR was the most common TCP variant for adult entertainment

websites. All in all, our results suggest that BBR is rapidly catching up with CUBIC in

popularity and some variant of BBR is poised to overtake CUBIC as the dominant TCP

variant.

3.3.4 Whithering the Unknown Variants

One of the benefits of our methodology is that Gordon can provide us with insights on

a congestion control variant even if we are not able to identify it. Given that a larger

number of websites (5,028 in total) were classified as ‘Unknown’ or ‘Short flows’ (to-

48 The Great Internet TCP Congestion Control Census

0

20

40

60

80

100

0 50 100 150 200

P
e
rc

e
n
ta

g
e
 s

h
a
re

K

Unresponsive
Short-flows

BBR
BBR G1.1

Cubic

Illinois/Compound

YeAH

BIC
HTCP

Vegas
Reno

16.0%

25.2%

22.4%

9.2%

7.6%

11.2%

8.4%

250

Short-flows
Unknown

Unresponsive

Figure 3.13: Distribution of variants among the Alexa Top-k sites.

gether referred to as ‘Uncategorized’ hosts henceforth), we ran a variety of new network

profiles to investigate their behavior under different conditions. These network profiles

were designed with different combinations of emulated BDPs, delays and Packet Drop

Thresholds. We hypothesize that the same TCP variant would exhibit the same behav-

iors for all network profiles, while different TCP variants may exhibit the same behavior

for some profiles, but different behavior for others, to allow us to tell them apart. Our

goal is to identify large clusters of traces that could suggest the presence of a new major,

but hitherto unknown, variant.

Given that Gordon can modify these three network parameters, we came up with

eight custom network profiles (shown in Table 3.7) that are distributed over the range

of these network parameters. Each of these network profiles emulates a fixed RTT and

BDP for an experiment run and introduces a packet drop when the cwnd size goes above

the Packet Drop Threshold for the first time.

Reaction to Loss. We found that among the 5,028 (25.14%) websites with un-

known variants, only 3,275 (16.38%) of them reacted to packet loss. Out of these 3,275

websites, 1,493 (7.47%) are short flows and the remaining 1,782 (8.91%) websites gave

inconsistent measurements after reacting to a packet loss. In other words, repeating

our measurements yielded different traces each time. We hypothesize that these are

3.3 Results 49

Table 3.7: Custom network profiles to investigate uncategorized hosts.

Profile Packet Drop RTT BDP
Threshold (packets) (ms) (packets)

1 80 100 50
2 80 100 25
3 80 50 25
4 40 100 50
5 40 100 25
6 40 50 25
7 40 200 100
8 40 100 100

likely cwnd-based TCP variants that we are not able to classify because of noise. It was

surprising that this noisiness was observed for all 5 viewpoints.

Among the remaining 1,753 (8.77%) websites with variants that did not react to the

packet loss, we found that a large class of 1,103 (5.52%) websites reacted to changes

in the BDP. For the remaining 650 (3.25%) websites that did not react to the packet

loss, we could not determine if they reacted to changes in the BDP because of noisy

measurements. Again, repeating measurements yielded different traces each time.

Akamai Congestion Control Variant. We found that all 1,103 (5.52%) websites

that reacted to changes in the BDP but not to packet loss were all hosted by the Akamai

CDN. These websites typically maintained the cwnd at a fixed multiple of the BDP,

ranging from 1.2 to 1.5. Typical shapes for these websites are shown in Figures 3.14a -

3.14d. We found that the traces for the AkamaiCC websites in response to our custom

network profiles tend to take one of 2 shapes shown in Figs. 3.14a and 3.14b. As shown in

Figs. 3.14c and 3.14d, these shapes remain consistent across different network profiles.

While this behavior matches no known TCP implementation in the Windows or the

Linux kernel, we hypothesized that it was the result of TCP optimizations developed at

Akamai [84] or the deployment of FAST TCP [85]. We refer henceforth to this variant as

AkamaiCC. Some notable websites identified to use AkamaiCC include microsoft.com,

apple.com, and hulu.com.

50 The Great Internet TCP Congestion Control Census

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(a) Akamai Shape 1 (Profile 4).

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(b) Akamai Shape 2 (Profile 4).

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

BDP

(c) Akamai Shape 1 (Profile 1).

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

c
w

n
d
 (

p
a
c
k
e
ts

)
RTT #

Packet Loss
BDP

(d) Akamai Shape 2 (Profile 4).

Figure 3.14: Sample traces for websites hosted by Akamai.

We found that a total of 1,260 (6.30%) websites among the Alexa Top 20,000 web-

sites were hosted by Akamai, but not all of them show the behavior illustrated in Fig-

ures 3.14a - 3.14d. All the remaining 157 (0.79%) Akamai-hosted websites did not react

to loss and yielded noisy measurements and so are categorized as ‘Unknown.’ It is plau-

sible that these websites are also running AkamaiCC, but we are not able to see the

AkamaiCC shape in their traces because of noise.

We contacted Akamai to verify these results and they have confirmed that AkamaiCC

was likely FAST TCP. That said, the Akamai team also highlighted that Akamai does

not typically deploy a specific TCP variant for a specific website (though there were cases

where they might). It is plausible that our findings were an artifact of our experimental

setup and the pages that we had chosen to download from the Alexa Top 20,000 websites.

Akamai currently deploys a variety of Congestion Control variants including FAST TCP,

a modified version of Reno, vanilla BBR, a modified version of BBR, QDK (a proprietary

Congestion Control algorithm), and CUBIC. In addition, under some network conditions,

3.3 Results 51

Table 3.8: Summary of websites not classified as known congestion control variants.
Type React to Packet Loss? React to BDP? Websites (share)
AkamaiCC ✗ ✓ 1,103 (5.52%)
Unknown Akamai ✗ ? 157 (0.79%)

Unknown ✗ ? 493 (2.47%)
✓ ? 1,782 (8.91%)

Short flows ✓ ? 1,493 (7.47%)
Unresponsive ? ? 1,302 (6.51%)
Total 6,330 (31.65%)

Akamai servers could switch between these algorithms in the middle of a connection.

This would be a plausible explanation for the noisy and unrecognizable traces observed

for some of the 157 Akamai-hosted websites that we could not classify.

In summary, as shown in Table 3.8, a large number of the websites that Gordon was

not able to identify as known variants can be attributed to the 1,103 (5.51%) websites

running AkamaiCC. In other words, Gordon can classify 14,773 (73.87%) of the Alexa

Top 20,000 websites as some variant. Among the remaining 5,227 (26.14 %) websites,

1,302 (6.51%) were found to be unresponsive, 1,493 (7.47%) had web pages that were

too small to yield a long enough trace for classification, and 2,432 (12.16%) could not

be classified because most of them yielded noisy and inconsistent traces.

The best of the rest. We know from our results in §3.3.1 that some of the websites

classified as one of the 2,432 “Unknown” websites would be known variants that Gordon

is not able to identify because of noise. However, it is likely that there also new and

undocumented variants because of the diverse behaviors that we observed. We reproduce

3 of the more interesting traces in Figure 3.15:

1. amazon.com: In Fig. 3.15a, we see that Amazon has deployed a TCP variant

which resembles HTCP in its Congestion Avoidance phase. However, the variant

either does not back-off on seeing a Gordon-induced packet loss or has a significant

multi-RTT delay in its response to loss. The reduction at cwnd = 200 is not due

52 The Great Internet TCP Congestion Control Census

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(a) amazon.com

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(b) zhihu.com

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

c
w

n
d
 (

p
a
c
k
e
ts

)

RTT #

Packet Loss
BDP

(c) yahoo.co.jp

Figure 3.15: The weird and wonderful world of TCP in the wild.

to buffer overflow. The buffer for Gordon can hold significantly more packets than

that without suffering overflow.

2. zhihu.com: The behavior observed for the trace in Fig. 3.15b showed an unre-

stricted growth in the sender’s cwnd. It seems like the deployed TCP variant is

oblivious to packet losses and bandwidth changes, and simply maintains a very

high and constant cwnd.

3. yahoo.co.jp: The behavior in Fig. 3.15c suggests that whatever congestion control

variant Yahoo has deployed is exiting Slow Start prematurely, and conservatively

increases its cwnd until it sees a packet loss.

We believe that these examples serve to illustrate the diversity in the unknown

variants and would convince the reader that it was not embarrassing that we have not

been able to identify these variants in the first instance. At some level, these results

are also a wake-up call. In academia, we often assumed that we would be the ones to

invent new TCP variants and the industry would subsequently, pick the winner. The

development of BBR has been led by Google, and it seems that companies such as

Akamai, Amazon, and Netflix, are not too far behind.

3.3.5 TCP Evolution over the past Two Decades

To have an overview of TCP evolution on the Internet over the years, we compare our

results to previous studies conducted by Padhye et al. [19], Medina et al. [20] and Yang et

3.3 Results 53

Table 3.9: Evolution of TCP variants on the Internet over the past 2 decades.
2001 [19] 2004 [20] 2011 [21] 2019

Loss-based
AIMD

New Reno 35% (1,571) New Reno 25% (21,266)
AIMD 12.46% (623)

New Renoh 0.80% (160)
Reno 21% (945) Reno 5% (4,115) Renod -
Tahoe 26% (1,211) Tahoe 3% (2,164) Tahoed -

Loss-based
MIMD - - - -

CUBIC 22.30% (1,115) CUBIC 30.70% (6,139)
BIC 10.62% (531) BIC 0.90% (181)
HSTCP 7.38% (369) HSTCPh

Scalable 1.38% (69) Scalable 0.20% (39)
Delay-based

AIMD - - - - Vegas 1.16% (58) Vegasv 2.82% (564)
Westwood 2.08% (104) Westwood 0% (0)

Delay-based
MIMD - - - -

CTCP 6.68% (334) CTCP 5.74% (1,148)Illinois 0.56% (28) Illinois
Veno 0.90% (45) Venov

YeAH 1.44% (72) YeAH 5.81% (1,162)
HTCP 0.36% (18) HTCP 2.80% (560)

Rate-based - - - - - - BBR 17.75% (3,550)
- - - - - - BBR G1.1 0.84% (167)
- - - - - - AkamaiCC 5.51% (1,103)

Unknown 17.30% (792) 53% (44,950) Unknown 3.96% (198) 12.16% (2,432)Abnormal SS* 2.88% (144)
Short flows - - 26% (1,300) 7.47% (1,493)
Unresponsive 0.7% (30) 14% (11,529) - 6.51% (1,302)
Total hosts 100% (4,550) 100% (84,394) 100% (5,000) 100% (20,000)
d These implementations have been deprecated.
h HTCP and New Reno have been classified together.
v Veno and Vegas have been classified together.
* websites identified by CAAI having abnormal Slow Starts.

al. [21] in Table 3.9. Since the total hosts measured over the various studies vary widely

and there is also a large variance in terms of success rates, we normalize the results

over the total reported successful classifications for each study in Table 3.10 to obtain

estimated proportions of the various variants. New Reno had rapidly surpassed Reno

as the dominant TCP variant in early 2000’s. The next 10 years saw the rise of loss-

based MIMD protocols such as CUBIC and BIC which dominated the overall adoption

decreasing the share of loss-based AIMD protocols. By 2011, HSTCP and Microsoft’s

CTCP also held significant shares of 10% and 9% respectively.

Five years later in 2019, traditional loss-based AIMD schemes have become near-

extinct (at least in terms of pure website count). On the other hand, the adoption of

delay-based Vegas has almost doubled. CUBIC has remained the most popular TCP

variant and has increased its share among the top 20,000 hosts to some 36% compared

54 The Great Internet TCP Congestion Control Census

to 30% in 2011, while the share of BIC and HSTCP has reduced significantly.

While delay-based variants seem to have become slightly more popular over the past

decade (increasing in share from 15% in 2011 to 20% in 2019), CTCP seems to have

slightly decreased in popularity in recent years. We suspect that this is likely due to

Microsoft’s addition of CUBIC as an option in Windows Server 2016 and making CUBIC

the default congestion control algorithm in Windows 10 (2019 builds) and Windows

Server 2019 [86].

Finally, the most significant development between 2011 and 2019 is the emergence of

rate-based variants like BBR and AkamaiCC. BBR and it’s variant BBR G1.1 now have

an approximate 22% share while AkamaiCC has a 6% share. Overall, CUBIC seems to

have increased in popularity at the expense of traditional loss-based AIMD variants, but

this lead will likely be under pressure from rate-based variants in the near future.

3.4 Discussion

Over the course of our measurements, it became clear that the Internet was a constantly

evolving entity and a moving target. While the main results reported in this study were

from the measurements done between July and October in 2019, findings like Google’s

change in its BBR deployment and the existence of rate-based variants other than BBR

on the Internet shows that we are currently in midst of a shift from the traditional

congestion control paradigm.

The Gordon project started as a measurement study to understand the latest distri-

bution of TCP variants on the Internet since the last study was done 8 years ago. We

decided to start with a simple approach of measuring cwnd one RTT at a time. While

the modifications we adopted (§3.2.1) might seem straightforward, in hindsight, it took

us a while to get the details right and collect all the data. It turns out that our chosen

approach made the mitigation of random losses much easier and works well for the vast

3.4 Discussion 55

Table 3.10: Share of TCP variants normalized over all successful classifications.
2001 [19] 2004 [20] 2011 [21] 2019

Loss-based
AIMD

New Reno 35% New Reno 29%
AIMD 17%

New Renoh <1%
Reno 21% Reno 6% Renod -
Tahoe 26% Tahoe 3% Tahoed -

Loss-based
MIMD - - - -

CUBIC 30% CUBIC 36%
BIC 14% BIC 1%
HSTCP 10% HSTCPh

Scalable 2% Scalable <1%
Delay-based

AIMD - - - - Vegas 2% Vegasv 3%
Westwood 3% Westwood 0%

Delay-based
MIMD - - - -

CTCP 9% CTCP 7%Illinois <1% Illinois
Veno 1% Venov

YeAH 2% YeAH 7%
HTCP <1% HTCP 3%

Rate-based - - - - - - BBR 21%
- - - - - - BBR G1.1 1%
- - - - - - AkamaiCC 6%

Unknown 18% 62% Unknown 5% 14%Abnormal SS* 4%
Total Measurable hosts 100% 100% 100% 100%
d These implementations have been deprecated.
h HTCP and New Reno have been classified together.
v Veno and Vegas have been classified together.
* websites identified by CAAI having abnormal Slow Starts.

majority of websites surveyed.

Bringing Uncooperative Sites On-board. We suspect that our approach in

making a large number of abrupt connections can be improved. In particular, we ob-

served that many of the websites for which we were not able to identify the TCP variant

were in the banking and government sectors (§3.3.2). We are not entirely surprised

that we were often throttled or blocked in the midst of a measurement run since our

connections would seem to be misbehaving to the TCP sender. We have classified these

hosts as ‘Unresponsive’ in Table 3.5. In fact, as we demonstrate in Chapter 6, Gordon’s

aggressive measurement strategy does not work on most websites anymore. In response

to this, we have since developed a more future-proof passive measurement strategy.

56 The Great Internet TCP Congestion Control Census

Easy Extensions. While we had hoped to design “one tool to measure them all,”

we have subsequently realized that there is a limitation to our approach. Because we

normalize a host’s sending behavior by RTT, behavioral differences that exist at a gran-

ularity smaller than one RTT cannot be observed. This would also explain why we are

often unable to observe a drop in the cwnd after a packet loss event for the currently

deployed Google G1.1 BBR variant (see §3.3.2). That said, the variants that Gordon

is not able to differentiate are relatively small and insignificant in terms of popularity,

so we did not invest more time to work on them. In principle, we can classify them by

adding a second stage to the classification process after Gordon is done with a high-level

classification.

Understanding Long-Term TCP Evolution. Our results suggest an active push

by large Internet companies towards rate-based TCP variants. However, as common

cloud service providers like Google Cloud are now enabling BBR [87] and the Akamai

CDN is running AkamaiCC, small entities using these services might be making the

switch to rate-based variants without knowing it. This suggests that the landscape of

TCP congestion control is undergoing rapid and significant change, possibly led by the

CDNs. Therefore, we do not think that taking a snapshot every 10 years is good enough

and more frequent measurements need to be made.

3.5 Summary

In summary , we used Gordon to identify the TCP variants for the top 20,000 websites

based on their Alexa rankings [71]. Our results suggest that CUBIC is currently still

the dominant TCP variant on the Internet and is deployed at 36% of the Alexa Top

20,000 websites that we successfully classified. Rate-based TCP variants like BBR have

the next largest share. While BBR and its variant BBR G1.1 have a share of only 22%

in terms of website count, their present share of total Internet traffic volume is likely to

3.6 Resources 57

be larger than 40% [10]. This proportion will almost certainly exceed 50% if Netflix also

decides to adopt BBR.

Since it is natural for the Internet to evolve, this is not the first time that we are

seeing a dominant TCP variant in the process of being replaced by an alternative. How-

ever, we believe that the current change represents a fundamental shift in the underlying

Internet. In previous transitions, all the TCP variants were cwnd-based and the inter-

actions between AIMD/MIMD protocols have been well-understood. BBR represents

a fundamental departure in our approach to congestion control. While BBR has been

studied and issues have been highlighted [24, 88], to the best of our knowledge, the in-

teractions between BBR and CUBIC at scale are not fully understood. While nothing

seems to have broken thus far even as BBR has gained traction, we do not yet know

for sure that nothing will necessarily go wrong. We believe that our results suggest the

need for more in-depth study in the interactions between BBR and CUBIC to ensure

the future stability and success of the Internet.

3.6 Resources

Our measurement tool, along with the cwnd traces for the Alexa Top 20,000 websites is

available on GitHub (https://github.com/NUS-SNL/Gordon).

https://github.com/NUS-SNL/Gordon

Chapter 4
Are we heading towards a BBR-dominant

Internet?

The rapid adoption rates of BBR in three short years since its introduction (as described

in Chapter 3) inspire one to ask an obvious question: Are we heading towards a BBR-

dominant Internet? In this chapter, we explore how we can answer this question.

Predicting how widely we can expect BBR to be adopted on the Internet is an im-

portant question because the stability of the Internet depends on the competing flows

interacting well with one another. We have not experienced a congestion collapse [7]

for many years likely because the vast majority of flows have been well-understood

AIMD/MIMD-window-based TCP flows [18]. The last major change in the Internet con-

gestion landscape happened when CUBIC replaced New Reno [19, 21]. That transition

was however relatively incremental because both CUBIC and New Reno are loss-based

and cwnd-based. Therefore, all existing in-network solutions, policing algorithms, and

AQMs already deployed on the Internet could largely remain unchanged.

On the other hand, if BBR were to replace CUBIC as the dominant congestion

control algorithm for the Internet, it represents a fundamental paradigm shift. Many

classic networking questions that have supposedly been settled would have to be re-

60 Are we heading towards a BBR-dominant Internet?

evaluated. For example, it was said that router buffers ought to be sized inversely

proportional to
√

N , where N is the number of flows [89]. Later, it was shown that

even tiny buffers might suffice under certain conditions [90]. However, these rules of

thumb assumed that flows were loss-based. BBR is loss-agnostic [91]. In other words,

a BBR-dominant future Internet [1] could have potentially wide-ranging consequences

and even fundamental issues like buffer sizing will need to be revisited [40].

The first step toward predicting the future composition of the Internet’s congestion

control landscape is to understand the incentive(s) for switching to BBR. Companies

like Dropbox [35], YouTube [92], and Spotify [36] that have adopted BBR have cited

better throughput as the most common reason for making the switch. To determine

if switching to BBR would continue to yield better throughput, we need to understand

how BBR flows interact with CUBIC flows. While a model was earlier proposed by Ware

et al [25], we found that some of the assumptions made were not realistic and verified

experimentally that their model does not make accurate predictions. To address this

gap, we developed a new model that is able to accurately model BBR’s performance to

within 5% error for most realistic buffer sizes.

With an accurate model of competing CUBIC and BBR flows, we formulate the

interactions between CUBIC and BBR flows as a normal form game. A normal form

game is a standard representation of a strategic game between a finite number of players

where each player has the opportunity to maximize its utility by selecting some strategy

from a finite set of strategies. By doing so, we can abstract the setting in which websites

chose their congestion control algorithms as a simple normal form game in which some

finite number of players (websites) try to maximize a utility (throughput) by selecting

some pre-defined strategies (i.e. either running CUBIC or BBR). We can then apply

standard game-theoretic analysis to determine if a Nash Equilibrium exists. A Nash

Equilibrium (NE) is a strategy distribution in which none of the players stand to gain

anything by switching strategies given that the strategies of all the other players remain

61

the same. In the context of our problem, a Nash Equilibrium is a stable distribution

of CUBIC and BBR flows such that none of the flows have any incentive to switch

congestion control algorithms.

By solving the normal form game, we show that a NE distribution of CUBIC and

BBR flows will exist in most networks with realistic configurations. Our model is also

able to predict these NE distributions and we verify empirically with a large number of

experiments that these predictions are accurate. Our contributions in this work can be

summarized as follows:

1. We present a new mathematical model for predicting the bandwidth shares of com-

peting CUBIC and BBR flows. We verify our model with extensive experiments

to show it is demonstrably more accurate at predicting bandwidth shares than the

current state-of-art model by Ware et al. [25].

2. With our model, we are able to predict that BBR’s throughput gains over CUBIC

steadily reduce as the proportion of BBR flows increases.

3. We adapt our model to determine this Nash Equilibrium (NE) distribution for

multiple flows with the same RTT and show (both mathematically and empirically)

that this NE is at a mixed distribution of CUBIC and BBR flows. We also show

that our analysis seems to hold for BBRv2, an upgraded version of BBR that is

currently being developed at Google [26].

In summary, we present a mathematical model for understanding how CUBIC and

BBR compete with each other and use its results to predict the future of the Internet’s

congestion control landscape. We predict that while BBR, or perhaps BBRv2, is likely

to become more popular, it is not likely that the majority of the Internet will fully

switch from CUBIC to BBR if better throughput is the key consideration. We observed

that there are diminishing returns in BBR’s throughput advantage over CUBIC as the

proportion of BBR flows increases. As more and more flows switch to BBR on the

62 Are we heading towards a BBR-dominant Internet?

Internet, CUBIC is likely to become more competitive until the point where there is no

longer an incentive to switch between the two.

While a limitation of our model is that we assume that all flows have the same

RTTs, we argue that this assumption is plausible, since a majority of today’s Internet

traffic is served via CDNs [10]. This means that it is quite plausible for the flows at local

bottlenecks to have similar RTTs. We augment our model to predict a Nash Equilibrium

distribution of CUBIC and BBR flows in a network and show that the ultimate mix of

CUBIC and BBR on the Internet will mainly depend on the bottleneck buffer size and

RTTs of the competing flows.

4.1 Modelling Interactions between BBR and CUBIC

In this section, we first describe a basic model that will allow us to predict the throughput

shares when a CUBIC flow competes with a BBR flow at a common bottleneck. Next,

we extend this model to a setting with multiple CUBIC and BBR flows. For simplicity,

we will assume that all the competing flows have the same base RTT. We note that the

majority of today’s Internet traffic is served via CDNs [10], so it would not be uncommon

for the majority of flows at local bottlenecks to have similar RTTs. In this light, we argue

that this assumption is likely applicable in many contexts.

4.1.1 Background

BBR Overview. BBR (Bottleneck Bandwidth and Round-trip propagation time) is a

rate-based congestion control algorithm proposed by Google in 2016 [22]. BBR estimates

its share of the bottleneck bandwidth and the minimum round-trip time (RTT) of the

path to regulate the TCP send rate. While doing so, BBR maintains a cap on its in-

flight data at twice the bandwidth-delay product (BDP). BBR is implemented as a state

machine with the following 4 states to make periodic and sequential measurements to

4.1 Modelling Interactions between BBR and CUBIC 63

keep its estimates up-to-date:

1. Startup: To quickly learn the bottleneck bandwidth, BBR performs an exponen-

tial search by doubling its sending round every iteration. By doing so, it is able

to find bottleneck bandwidth in O(log2(BDP)) round trips. BBR transitions to

the Drain phase once it detects that the pipe is full by looking for a plateau in

bandwidth estimates.

2. Drain: BBR drains packets it has accumulated in the queue during the aggressive

Startup phase by reducing its in-flight packets to 1 BDP. Once it estimates that

the queue is fully drained, but the pipe remains full, BBR enters the ProbeBW

phase.

3. ProbeBW: BBR spends a majority of time in the ProbeBW state, and probes

for bottleneck bandwidth using a technique called gain cycling. BBR undergoes a

cycle of 8 RTTs: it first sends packets at 1.25 times the maximum receive rate to

probe for extra bandwidth at the bottleneck. To compensate for this aggression.

it sends packets at 0.75 times for the next RTT, and for the remaining 6 RTTs, it

maintains its sending rate at the maximum receive rate.

4. ProbeRTT: BBR needs to empty the bottleneck buffer in order to accurately

estimate the minimum RTT (RTTmin). BBR enters the ProbeRTT phase once

every 10 seconds, reducing its in-flight packets to 4 in an attempt to drain the

buffer.

CUBIC Overview. TCP CUBIC [16] is a loss-based algorithm, which means that

when it encounters a packet loss, it shrinks its congestion window (cwnd) by a factor of

0.7. Otherwise, it increases cwnd using Equation (4.1).

cwnd(t) = C × (t−K)3 + Wmax (4.1)

64 Are we heading towards a BBR-dominant Internet?

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

Ba
nd

w
id

th
 (

M
bp

s)

Buffer size (BDP)

Ware et al.
BBR's actual bandwidth share

Figure 4.1: BBR bandwidth share for 50-Mbps bottleneck link at 40 ms RTT.

where Wmax is the window size just before the window is reduced and

K = 3
√

Wmax × (1− βcubic)/C

CUBIC’s implementation in the Linux kernel sets C = 0.4, βcubic = 0.3. For the purposes

of our model, the key aspect of a CUBIC flow is that it reduces to 0.7 times Wmax after

it experiences a packet loss.

4.1.2 Issues with Model by Ware et al.

To the best of our knowledge, the current best state-of-art model for the interactions

between CUBIC and BBR is the model by Ware et al. [25]. Their model predicts the

aggregate bandwidth of the competing BBR flows as

BBRfrac = (1− p)
(

d− Probetime

d

)
(4.2)

where

p = 1
2 −

1
2X
− 4N

q
(4.3)

Probetime =
(

q

c
+ .2 + l

) (
d

10

)
(4.4)

4.1 Modelling Interactions between BBR and CUBIC 65

where p represents the competing CUBIC flows’ aggregate fraction of the bottleneck

bandwidth c. N is the number of competing BBR flows, q is the average queuing delay

in the bottleneck buffer and X is the size of the bottleneck buffer in BDP. l is the base

RTT of all the flows and d is the duration of the time the flows compete.

Their model predicts that BBR flows get a fixed share of the bottleneck bandwidth

regardless of the number of competing CUBIC flows. While qualitatively this model

does make some interesting observations (for example, Ware et al. were the first to

highlight that BBR’s in-flight cap is key in determining how it competes with other

CUBIC flows), we have found their model to deviate significantly from actual BBR

performance in experiments. We can see this from the results in Figure 4.1 for a simple

experiment with a CUBIC flow competing with a BBR flow at a 50-Mbps bottleneck

link, with each flow lasting for 2 minutes and having a base RTT of 40 ms.

With some analysis, we found that the inaccuracies in Ware et al.’s model [25] are

due to the following assumptions:

1. The most problematic assumption is that the buffer is always full. This assumption

was most likely made in the interest of simplicity since even the experiments in [25]

demonstrate that this assumption is not true.

2. The second assumption is an over-simplification that BBR’s RTT is the base

congestion-free RTT plus p × q, where p is CUBIC’s share of the link capacity

and q is the size of the bottleneck buffer. Since a flow’s throughput is directly

proportional to its average buffer occupancy, this calculation implies that CU-

BIC’s average buffer occupancy is responsible for bloating BBR’s RTTmin esti-

mate. However, since BBR measures the minimum RTT during the ProbeRTT

phase, it stands to reason that this bloating of the RTTmin should be affected by

CUBIC’s minimum buffer occupancy, and this is not the average buffer occupancy.

This problem is further exacerbated when compounded with their first assumption

66 Are we heading towards a BBR-dominant Internet?

that the buffer is always full. This effectively fixes CUBIC’s buffer occupancy and

uses what is in reality CUBIC’s maximum buffer occupancy to calculate BBR’s

bloated RTTmin estimate.

We make none of these assumptions in our new model. When there are multiple CUBIC

flows involved, we derive a confidence interval instead of assuming CUBIC’s share of

the link capacity to be fixed. This interval not only accurately predicts the actual

average bandwidth of the competing flows, but also captures the stochasticity of these

interactions caused by the varying degrees of synchronization between the CUBIC flows

across trials and network conditions.

4.1.3 Basic 2-Flow Model

In this section, we describe a simple model that can predict the bandwidth shares of

two competing CUBIC and BBR flows passing through a simple drop-tail queue. In this

model, both the flows have the same base/minimum RTT and compete at a bottleneck

with link capacity C and buffer size B.

Assumptions. Our model makes the following assumptions:

1. The link is always fully utilized. Since our analysis is centered around the

bottleneck of the connection, we assume that the link is always utilized and there

are always a non-zero number of packets in the buffer. To allow this assumption

to hold in the presence of loss-based flows like CUBIC, we also assume the buffer

is sufficiently sized [40] (at least 1 BDP) and that the CUBIC flows do not suffer

any premature packet loss.

2. The BBR flows always maintain 2 BDP packets in flight. This assumption

is in line with the observations made by Ware et al. [25], where they showed that

BBR becomes cwnd-bound when it competes with CUBIC. The standard imple-

mentation of BBR has a cwnd twice its estimated BDP. To allow this assumption

4.1 Modelling Interactions between BBR and CUBIC 67

Table 4.1: Model Notation

Symbol Meaning
C Bottleneck link capacity
B Bottleneck buffer size
RTT Base RTT (propagation delay)
RTT + BBR’s over-estimate of the RTT
bc CUBIC’s average buffer occupancy
bb BBR’s average buffer occupancy
Qd Queuing delay
bcmin CUBIC’s minimum buffer occupancy
bcmax CUBIC’s maximum buffer occupancy
λb BBR flow’s bandwidth
λc CUBIC flow’s bandwidth
λcmin CUBIC’s smallest bandwidth share
λcmax CUBIC’s largest bandwidth share
Wmax CUBIC’s largest cwnd

to hold, we consider buffers that are at least 1 BDP in size.

3. The packets from the two flows are uniformly distributed in the buffer.

4. The BBR flows are mostly loss-agnostic (This is true for BBRv1 [22])

5. The reduction in BBR’s bandwidth during the ProbeRTT phase is neg-

ligible. We make this assumption because BBR’s ProbeRTT phase lasts only for

around 200 ms, which is negligible compared to its 10 s long ProbeBW phase.

6. All flows have the same base/minimum RTT.

The notation used for our model is listed in Table 4.1 for convenient reference.

Modeling throughput. Consider the bottleneck illustrated in Figure 4.2. At any

given point in time, the throughput achieved by a flow is going to be the number of

bytes it has in flight divided by its round-trip time. The in-flight bytes for both the

CUBIC and BBR flows will be their respective buffer shares bb and bc plus the amount

of data they have on the wire. Since both the flows see the same bottleneck queuing

68 Are we heading towards a BBR-dominant Internet?

B

C

bb

bcmin

bc

bcmax

λc

λb

CUBIC

BBR

Figure 4.2: Network model.

delay because they share the same bottleneck, we can write their bandwidths as follows:

λc ←
λcRTT + bc

RTT + Qd
(4.5)

λb ←
λbRTT + bb

RTT + Qd
(4.6)

However, since we know that BBR is limited by its cwnd (which is capped by 2 ×

BDP) when competing with a CUBIC flow [25], we can rewrite Equation (4.6) as follows:

λb ←
2λbRTT +

RTT + Qd
(4.7)

where RTT + is BBR’s overestimate of the minimum RTT.

The queuing delay Qd is the total number of bytes both the flows have in the buffer

divided by the rate at which these bytes are drained (link capacity C)

Qd = bb + bc

C
(4.8)

Relating RTT + to CUBIC’s buffer occupancy. BBR flows see a bloated RTT

because during its ProbeRTT phase, the bottleneck buffer is not completely empty and

4.1 Modelling Interactions between BBR and CUBIC 69

there are still some CUBIC packets that have not drained. Then, RTT + can be written

as:

RTT + = RTT + bcmin

C
(4.9)

here, bcmin is the smallest number of packets a CUBIC flow has in the buffer during

BBR’s ProbeRTT phase. We will assume this to be CUBIC’s buffer share when it backs

off after a packet loss. Combining Equations (4.7) and (4.9) and simplifying, we get:

bb + bc = 2bcmin + C ·RTT (4.10)

where bb + bc is effectively the average buffer occupancy. This is assuming the buffer size

is greater than 1 BDP (or C×RTT). We can use this result together with Equation (4.8)

to rewrite Equation (4.5) as follows:

λc ←
λcRTT + bc

2RTT + 2bcmin
C

(4.11)

CUBIC Minimum Buffer Occupancy. bcmin is CUBIC’s minimum buffer occu-

pancy, which occurs when the CUBIC flow backs off after a packet loss. Since we know

that CUBIC backs off to 0.7 times its maximum buffer occupancy after a packet loss,

we can calculate bcmin as follows:

bcmin = (0.7Wmax)− (λcminRTT) (4.12)

where λcmin represents the share of the bottleneck bandwidth the CUBIC flow receives

during backoff, and (λcmin×RTT) is the number of bytes on the pipe after this backoff.

Since the relevant buffer shares of BBR and CUBIC are an indicator of how much

bottleneck bandwidth they are receiving at any point in time, we can write λcmin as:

λcmin = bcmin

bcmin + bb
C (4.13)

70 Are we heading towards a BBR-dominant Internet?

To calculate bcmin in Equation (4.12), we need to calculate the largest window size

Wmax for the competing CUBIC flow. We estimate Wmax as follows:

Wmax = bcmax + λcmaxRTT (4.14)

where bcmax is simply the buffer occupancy a CUBIC flow has when it completely fills

the bottleneck buffer:

bcmax = B − bb (4.15)

and λcmax is the bandwidth CUBIC gets when it puts bcmax packets in the buffer:

λcmax = bcmax

bcmax + bb
C (4.16)

From the results from Equations (4.13) to (4.15), we can expand Equation (4.12) to

calculate bcmin as follows:

bcmin + bcmin

bcmin + bb
C ·RTT = 0.7× (B − bb + B − bb

B
C ·RTT) (4.17)

Putting it all together. Using the relation from Equation (4.10) and approximat-

ing bb + bc = B, we can write Equation (4.17) as:

B − C ·RTT

2 +
B−C·RT T

2
B−C·RT T

2 + bb

C ·RTT = 0.7× (B − bb + B − bb

B
C ·RTT) (4.18)

Since B, C, and RTT are known quantities, we can solve Equation (4.18) to get a

BBR flow’s buffer occupancy when competing with another CUBIC flow. This bb value

can then be plugged into a simplified version of Equation (4.11) to solve for λc and λb:

λc

(
RTT + 2bcmin

C

)
= 2bcmin + C ·RTT −Bb (4.19)

4.1 Modelling Interactions between BBR and CUBIC 71

λb = C − λc (4.20)

4.1.4 Modelling Multiple Flows

For a network with multiple CUBIC and BBR flows with the same RTT, we make the

following observations:

1. First, the 2-flow model described in §4.1.3, only needs to take into account a

CUBIC flow’s maximum and minimum buffer occupancy. Hence, for a bottleneck

with a total N flows with Nc of them being CUBIC flows and Nb of them being

BBR flows, we can model all the CUBIC flows as one aggregate CUBIC flow with

a combined bandwidth λ̂c.

2. Similarly, we model all the BBR flows as another aggregate BBR flow with the

bandwidth λ̂b. This is because we assume that the behavior of the aggregate

BBR flow is practically identical to a single BBR flow when all the participating

BBR flows will be cwnd bound. This is because we expect the BBR flows to be

synchronized even while competing with other CUBIC flows and be fair to each

other because of having similar RTTs [22].

3. Next, while b̂cmax remains largely unchanged (since CUBIC flows always attempt

to fill the buffer, regardless of whether there is one flow or many flows), b̂cmin can

vary for the aggregate CUBIC flow. This is because with multiple flows, depending

on the loss pattern and start times of the competing flows, they can have varying

levels of synchronization between the multiple CUBIC flows. We consider the

maximum and minimum levels of synchronization separately.

In other words, to model a network with multiple CUBIC and BBR flows, we use

the same model described in §4.1.3 but replace λb and λc with λ̂b and λ̂c, respectively.

The one key difference is that instead of using Equation (4.12), we consider 2 boundary

cases:

72 Are we heading towards a BBR-dominant Internet?

1. CUBIC Synchronized. If all the CUBIC flows are synchronized, the lower bound

for b̂cmin would be given by:

b̂cmin = (0.7Ŵmax)− (λ̂cminRTT) (4.21)

2. CUBIC De-Synchronized. On the other hand, if only one of Nc CUBIC flows

back-off at any time, i.e. all the flows are perfectly de-synchronized, the upper

bound for b̂cmin would be given by:

b̂cmin =
((Nc − 0.3)

Nc
Ŵmax

)
− (λ̂cminRTT) (4.22)

Solving the model for these 2 scenarios will provide us with a good estimate for the

bandwidth shares of the BBR and CUBIC flows. In practice, we find that the empirical

results are generally much closer to the case where CUBIC flows are synchronized (i.e.

Equation (4.21)). The average bandwidths of the individual flows can be obtained as

follows:

λc = λ̂c

Nc
(4.23)

λb = λ̂b

Nb
(4.24)

4.2 Model Validation

In this section, we validate our models in §4.1.3 and §4.1.4 using real experiments.

Since all the flows in our model have the same RTTs, we normalize the buffer size to the

bandwidth-delay product (BDP) in the graphs in this section to make it easy to compare

across different network conditions.

4.2 Model Validation 73

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

Ba
nd

w
id

th
 (

M
bp

s)

Buffer size (BDP)

Ware et al.
BBR's actual bandwidth share

our model

(a) 50 Mbps link, 40 ms RTT

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

Ba
nd

w
id

th
 (

M
bp

s)

Buffer size (BDP)

Ware et al.
BBR's actual bandwidth share

our model

(b) 50 Mbps link, 80 ms RTT

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

Ba
nd

w
id

th
 (

M
bp

s)

Buffer size (BDP)

Ware et al.
BBR's actual bandwidth share

our model

(c) 100 Mbps link, 40 ms RTT

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

Ba
nd

w
id

th
 (

M
bp

s)

Buffer size (BDP)

Ware et al.
BBR's actual bandwidth share

our model

(d) 100 Mbps link, 80 ms RTT

Figure 4.3: Predicted throughput vs. actual throughput when a CUBIC flow competes
with BBR.

4.2.1 Basic 2-Flow Model

We first evaluate the accuracy of our simple model that predicts the bandwidth shares

of two competing CUBIC and BBR flows. To this end, we launched a CUBIC and BBR

flow through a 50 Mbps bottleneck link. The buffer size was varied from 1 BDP all

the way up till 30 BDP in steps of 0.5 BDP. We repeated the same experiment with a

100 Mbps bottleneck link.

In Figures 4.3, we plot the observed throughput share of the BBR flow against buffer

size and compared it to the values predicted by Ware et al. [25]. Over a large range of

buffer sizes, our model can predict the throughput achieved by a BBR flow competing

with a CUBIC flow within 5% of the actual value. In contrast, Ware et al.’s model has

74 Are we heading towards a BBR-dominant Internet?

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ve

ra
ge

 p
er

-f
lo

w
 B

an
dw

id
th

 (
M

bp
s)

Buffer size (BDP)

Ware et al.
Predicted Region

CUBIC Synch bound
CUBIC De-synch bound

Actual throughput (BBR)

(a) 5 CUBIC vs 5 BBR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30

A
ve

ra
ge

 p
er

-f
lo

w
 B

an
dw

id
th

 (
M

bp
s)

Buffer size (BDP)

Ware et al.
Predicted Region

CUBIC Synch bound
CUBIC De-synch bound

Actual throughput (BBR)

(b) 10 CUBIC vs 10 BBR

Figure 4.4: Predicted vs. actual throughput of BBR and CUBIC flows when they
compete at 100 Mbps bottleneck with 40 ms RTT.

an error of at least 30% error, and this is for shallower buffers. As discussed in §4.1.2,

this is because they made assumptions that do not hold in shallow to moderately sized

bottleneck buffers.

An interesting observation from Figures 4.3 is that both the predictions of our model

as well as Ware et al.’s model are relatively stable across different link speeds and RTTs,

i.e. the plots for other link speeds and RTTs have a similar shape and error.

4.2.2 Multiple Flows

To evaluate the accuracy of our model for multiple flows, we launched 10 flows (5 CUBIC

flows vs. 5 BBR flows) through a 100 Mbps bottleneck link with all the flows having

a base RTT of 40 ms. The buffer size was varied from 1 BDP to 30 BDP in steps of 1

BDP. We repeated the same experiments with 20 flows (10 CUBIC flows vs. 10 BBR

flows). All the flows in these experiments were started simultaneously and lasted for 2

minutes.

In Figures 4.4, we plot the per-flow average throughput against the confidence interval

predicted by our multi-flow model. We see from our results that the per-flow average

throughput for BBR falls within the confidence interval predicted by our model. In fact,

4.2 Model Validation 75

we found the measured per-flow average throughput to be very close to the boundary

where the CUBIC flows are de-synchronized. We checked the traces of our experiments

and verified that the CUBIC flows were indeed generally not found to be synchronized

in these experiments. It should be noted here that while it looks like the model by

Ware et al. matches our model’s ‘Synch’ bound in deeper buffers, it is not because their

model assumes that the competing CUBIC flows are perfectly synchronized. In fact,

they assume that the buffer occupancy of the competing loss-based flows does not vary

at all - therefore CUBIC flows being either synchronized or not has no impact on the

assumptions of their model.

4.2.3 Varying the Proportion of Flows

Since our goal is to understand the evolution of the Internet’s congestion control land-

scape, it is also important to understand how BBR’s average per-flow bandwidth share

will change as the share of BBR flows at the bottleneck increases.

To this end, we launched 10 flows through a 100 Mbps bottleneck for buffer sizes

of 3 and 10 BDP. Each of these flow were either CUBIC or BBR. Over multiple runs,

we increased the share of the flows running BBR and measured the average bandwidth

achieved by BBR flows over a duration of 2 minutes. All the flows were launched

simultaneously. This experiment was then repeated for 20 flows.

In Figures 4.5, we plot the average per-flow throughput against the number of BBR

flows (out of 10 or 20). We see that the measured average per-flow throughputs indeed

fall within the upper and lower bounds predicted by our multi-flow model. We note that

in some cases, the measured values are closer to the boundary where the CUBIC flows

are synchronized and in other cases where they are not. Again, we checked the traces

of our experiments and verified that the behavior of the CUBIC flow did correspond to

the closer line in the experiments.

The most important takeaway from these experiments is that BBR’s average per-flow

76 Are we heading towards a BBR-dominant Internet?

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

A
vg

 p
er

-f
lo

w
 B

an
dw

id
th

 (
M

bp
s)

of BBR flows

Predicted Region
CUBIC Synch bound

CUBIC De-synch bound
Actual throughput (BBR)

(a) 10 flows, 3 BDP buffer

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20

A
vg

 p
er

-f
lo

w
 B

an
dw

id
th

 (
M

bp
s)

of BBR flows

Predicted Region
CUBIC Synch bound

CUBIC De-synch bound
Actual throughput (BBR)

(b) 20 flows, 3 BDP buffer

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

A
vg

 p
er

-f
lo

w
 B

an
dw

id
th

 (
M

bp
s)

of BBR flows

Predicted Region
CUBIC Synch bound

CUBIC De-synch bound
Actual throughput (BBR)

(c) 10 flows, 10 BDP buffer

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

A
vg

 p
er

-f
lo

w
 B

an
dw

id
th

 (
M

bp
s)

of BBR flows

Predicted Region
CUBIC Synch bound

CUBIC De-synch bound
Actual throughput (BBR)

(d) 20 flows, 10 BDP buffer

Figure 4.5: The diminishing throughput returns for BBR as its share at the bottleneck
grows.

bandwidth reduces as the proportion of flows running BBR at the bottleneck increases.

This suggests that as more and more users on the Internet start using BBR as their

congestion control algorithm, the throughput advantage currently enjoyed by BBR over

CUBIC will be reduced. At some stage, the average throughput for BBR could fall below

that of CUBIC! We will use this observation in §4.3 to show that a Nash Equilibrium

distribution of CUBIC and BBR must exist when multiple flows with the same base

RTT compete at a common bottleneck link. This trend also suggests that as more BBR

flows join the bottleneck, their collective buffer occupancy increases only sub-linearly.

4.3 Applying Game Theory 77

4.3 Applying Game Theory

In this section, we apply game theory using our model in §4.1.4 to predict how the

Internet might evolve in the near future.

Performance is multi-faceted and context-dependent. For simplicity, we focus on

throughput and assume the flows will choose the congestion control algorithm that offers

them the highest throughput, since better throughput is often cited as the reason for

switching congestion control algorithm [35, 36, 92].

We model users (websites) as agents that currently choose either CUBIC or BBR

as their congestion control (CC) algorithm. If a user can enjoy higher throughput by

switching to the other CC algorithm, then there would be an incentive to switch. A

Nash Equilibrium (NE) distribution of CUBIC and BBR flows occurs when none of the

users have any incentive to switch, either because doing so will not result in increased

throughput, or worse, will result in lower throughput.

We show that a NE must exist when flows with similar RTTs compete at a bottleneck

and discuss how this analysis applies to more complicated setting with other (non-BBR)

congestion control algorithms and more complex utility functions. Networks with flows

with different RTTs remain future work.

4.3.1 NE for flows with similar RTTs

Consider a network with n flows sharing a common bottleneck, each running either

CUBIC or BBR as their congestion control algorithm. In this network, we define a given

distribution of CUBIC and BBR flows to be a NE, if none of the flows have any incentive

to switch from CUBIC to BBR or vice versa to achieve better performance. Since all

the flows have the same RTT and are essentially symmetric, there are a total of n + 1

possible distributions for n flows. For each of these distributions, we can measure the

average bottleneck bandwidth received by all the BBR flows and plot them on a graph

78 Are we heading towards a BBR-dominant Internet?

B
B
R
's

 p
er

-f
lo

w
 b

an
d
w

id
th

Number of BBR flows

kk-1 k+1

(Number of BBR flows)

Nash Equilibrium

CUBIC flow
switching to BBR

BBR flow
switching to CUBIC

A

B
fairshare line

C

C

Figure 4.6: Nash Equilibrium for flows with similar RTTs.

as shown in Figure 4.6. The dotted line on this graph represents the fair-share line,

where the average bandwidth of the BBR flows is equal to the fair-share bandwidth (i.e.

link capacity divided by the total number of flows).

It has been observed that when a small number of BBR flows compete with a large

number of CUBIC flows, they are able to get a disproportionately large share of the

bottleneck bandwidth [25]. Given this result, we know that there exists a distribution

(with a small number of BBR flows) that lies above the fair-share line in Figure 4.6, which

we label as A. We also know that when all the flows at the bottleneck run BBR, they

will take up all the bottleneck bandwidth. The average bandwidth for the BBR flows

will then, by definition, be the fair-share bandwidth. We can use this observation to plot

point B in Figure 4.6. We expect all the distributions between these two distributions

to lie on a line connecting points A and B.

Next, we consider the distributions along the line from A to B. There are one of 2

possibilities: (i) either the line AB is always lies above the fair-share line, or (ii) the

line AB intersects the fair-share line at some point C. We note that for the points above

the fair-share line, BBR flows will have on average higher throughput; for the points

below this line, the CUBIC flows will have on average higher throughput. What this

also implies is that for the points above the fair-share line, some CUBIC flow will have

an incentive to switch to BBR; the converse would be true for the points below the

fair-share line.

4.3 Applying Game Theory 79

Case 1: AB is above the fair-share line. For any point between A and B, some

CUBIC flow would be incentivized to switch to BBR. As more flows switch from CUBIC

to BBR, we move along the AB line until we reach B. Point B, where all flows are BBR,

is then the Nash Equilibrium distribution. This is because no flows have the incentive

to switch to CUBIC because it would result in a loss of throughput.

Case 2: AB intersects the fair-share line at C. We claim that C is a Nash

Equilibrium distribution. To understand why we can zoom in and examine what happens

at C (Figure 4.6). There are 2 possibilities:

1. A CUBIC flow can switch to BBR. This would correspond to the current

state of the network moving to the right of C. This means the average throughput

of the BBR flows will drop below that of the CUBIC flows. Therefore, a CUBIC

flow will never switch to BBR.

2. A BBR flow can switch to CUBIC. On the other hand, a BBR flow switching

to CUBIC would move the current state of the network to the left of C, which will

result in the average throughput of the CUBIC flow dropping below that of the

BBR flows. So again, this switch is also not tenable.

Since it is not tenable to move either left or right, point C is a stable Nash Equilibrium

distribution.

Estimating the Nash Equilibrium distribution. Following the observations

in §4.1.4, the Nash Equilibrium distribution exists when the combined bandwidth of all

the BBR flows intersects with the fair-share line. In other words, the Nash Equilibrium

distribution is the value for Nb at which:

λb = λ̂b

Nb
= C

N
(4.25)

We can use Equation (4.25) in conjunction with Equations (4.20) and (4.24) of our

throughput model to predict the Nash Equilibrium distribution of CUBIC and BBR in

80 Are we heading towards a BBR-dominant Internet?

any given fixed capacity network where all the flows have the same base RTT!

4.3.2 Other Congestion Control Algorithms

The results for CUBIC and BBR in §4.3.1 are based on only two assumptions: (i) BBR

is able to obtain a disproportionately large share of the bottleneck bandwidth for at

least one distribution; and (ii) when all the flows are BBR, the BBR flows will take up

the available bottleneck bandwidth. The latter is self-evident if we replace BBR with

another congestion control algorithm. If we can show that the former property is also

true for another congestion control algorithm X, then an NE distribution of CUBIC and

X flows must also exist when flows with similar RTTs compete at a bottleneck.

To verify if the former property holds for the following congestion control algorithms

that were proposed after BBR: (i) BBRv2 [26], (ii) Copa [93], and (iii) PCC Vivace [55],

we launched an experiment with 10 flows in a network with a 100 Mbps bottleneck and a

2 BDP bottleneck buffer for each algorithm X. All flows in this network ran either CUBIC

or X. We measured the per-flow average throughputs for all 11 possible distributions of

CUBIC and X flows.

We plot the average per-flow throughput against the number of non-CUBIC (X) flows

in Figure 4.7. We found that PCC-Vivace [55], BBR [22] and BBRv2 [26] are able to

get a disproportionately large share of the bottleneck bandwidth when there are a small

number of flows. On the other hand, Copa [93] obtains lower average throughput for

all congestion control algorithm distributions. Therefore, we expect a Nash Equilibrium

distribution to exist for BBRv2 and PCC Vivace as well, but perhaps not for Copa.

We note that our result is valid only for the case of two competing algorithms com-

peting at a common bottleneck. Scenarios where more than two CC algorithms compete

at a common bottleneck remain future work.

4.3 Applying Game Theory 81

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

A
vg

.
pe

r-
flo

w
 b

an
dw

id
th

 (
M

bp
s)

Number of non-CUBIC flows at the bottleneck

fair-share
PCC-Vivace

BBR
BBRv2
Copa

Figure 4.7: Combined bandwidth vs. number of flows for various congestion control
algorithms.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

A
vg

.
pe

r-
flo

w
 B

w
 (

M
bp

s)

Number of non-CUBIC flows at the bottleneck

CUBIC
BBR

Figure 4.8: Average per-flow throughput.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

Q
ue

ui
ng

 d
el

ay
 (

m
s)

Number of non-CUBIC flows at the bottleneck

queueing delay

Figure 4.9: Average queuing delay

4.3.3 Complex Utility Functions

In the real world, it is likely there are senders that care not only about throughput

but also delay. For video streaming, the metric of import would become even more

complicated. However, we argue that even in such scenarios, throughput will likely still

be the metric that drives senders to switch between CUBIC and BBR.

To illustrate this, we plot the average throughput per algorithm and average queuing

delay of a 10 flow evolution experiment discussed in §4.3.2. The 10 flows in this experi-

ment pass through a bottleneck link of 100 Mbps, with a 2 BDP buffer and 40 ms base

RTT. The two lines in Figure 4.8 represent the average throughput and CUBIC and BBR

82 Are we heading towards a BBR-dominant Internet?

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

#
 o

f
CU

BI
C

flo
w

s
at

 t
he

 N
E

Buffer size in BDP

Nash Region
CUBIC De-synch bound

CUBIC Synch bound
Emperically observed NE

(a) 50 Mbps link, 20 ms link

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

#
 o

f
CU

BI
C

flo
w

s
at

 t
he

 N
E

Buffer size in BDP

Nash Region
CUBIC De-synch bound

CUBIC Synch bound
Emperically observed NE

(b) 100 Mbps link, 20 ms link

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

#
 o

f
CU

BI
C

flo
w

s
at

 t
he

 N
E

Buffer size in BDP

Nash Region
CUBIC De-synch bound

CUBIC Synch bound
Emperically observed NE

(c) 50 Mbps link, 40 ms link

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

#
 o

f
CU

BI
C

flo
w

s
at

 t
he

 N
E

Buffer size in BDP

Nash Region
CUBIC De-synch bound

CUBIC Synch bound
Emperically observed NE

(d) 100 Mbps link, 40 ms link

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

#
 o

f
CU

BI
C

flo
w

s
at

 t
he

 N
E

Buffer size in BDP

Nash Region
CUBIC De-synch bound

CUBIC Synch bound
Emperically observed NE

(e) 100 Mbps link, 40 ms link

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

#
 o

f
CU

BI
C

flo
w

s
at

 t
he

 N
E

Buffer size in BDP

Nash Region
CUBIC De-synch bound

CUBIC Synch bound
Emperically observed NE

(f) 100 Mbps link, 80 ms link

Figure 4.10: Predicted Nash Equilibrium vs. observed Nash Equilibria points for a
bottleneck with 50 flows.

4.3 Applying Game Theory 83

flows receive in a given trial. The single line in Figure 4.9 represents the average queuing

delay, which is a metric shared between the flows regardless of the congestion control

algorithm they run in that trial. What these graphs illustrate is that even though both

throughput and delay are dependent on the congestion control algorithm distribution at

the bottleneck, throughput is likely the only metric that is asymmetric enough to drive

flows to switch between CUBIC and BBR. For a flow that cares about queuing delay,

a switch between CUBIC and BBR likely leads to a marginal gain in utility (since it is

clear from Figure 4.9 that increasing the proportion of BBR flows has hardly any effect

on queueing delay unless all flows were BBR.)

Therefore, we conjecture that under simple utility functions that are linear combi-

nations of throughput and delay, a Nash Equilibrium distribution will still exist. This

is because we expect the decision to select between different congestion control algo-

rithms to still be dominated by the throughput gains in such settings. That said, it is

still unclear how the flows will react where all the participating flows have drastically

different utility functions. Investigating whether Nash Equilibria will exist and what the

distributions would look like for complex utility remains future work.

4.3.4 Experimental Verification

In this section, we present the results of our testbed experiments to validate the accuracy

of the NE distributions predicted by our results in §4.3.1.

Methodology. For each network setting, we run 10 trials of all the n + 1 possible

combinations of the n senders running either CUBIC or BBR. In each trial, the senders

send data for 2 minutes and we record their average per-flow throughput. To identify

the NE, we enumerate all the combinations and check if there is any combination such

that no individual flow in that combination can achieve higher throughput if it switches

to the other TCP variant (all other flows remaining fixed). It is common for multiple

distributions to satisfy this condition.

84 Are we heading towards a BBR-dominant Internet?

Nash Equilibria Found. We plot the results of NE found for 50 competing flows in

Figures 4.10a - 4.10f. The bottleneck bandwidth was set to 100 Mbps and 50 Mbps with

the buffer size varying from 0.5 to 50 times the BDP. All these flows had the same base

RTT which were 20, 40, and 80 ms across different trials. All the NE found empirically

were in the interval predicted by our model, except those at high BDPs. BBR is not

cwnd-limited in these regions and hence our model does not work well, which explains

why the actual NE deviates from our predictions.

Aside from the trend that there tend to be more CUBIC flows at the NE in deeper

buffers as compared to shallower buffers, the results in Figures 4.10a - 4.10f present two

more interesting trends. The first is that we found multiple NE over different iterations of

the same experiment. This is down to the throughput gains from switching between CU-

BIC and BBR being marginal around the Nash Equilibrium distribution. Therefore, any

stochasticity across the trials can result in the NE shifting to neighboring distributions.

We observe this phenomenon as multiple NE distributions across multiple trials.

The other trend is that when the buffer size is normalized by the BDP, the region

predicted by the model is exactly the same regardless of the base RTT or the bottleneck

link capacity. This is evident in Figures 4.10, where the predicted regions in all the six

different network settings tested have the exact same shape. The empirically observed

NE also follow this trend, with all of them roughly following the same curve across

experiments with different base RTTs and link speeds. This would suggest that where

the NE lies does not independently depend on either the link capacity C or the RTT ,

but the BDP. This makes sense, since the key indicator in what bandwidth competing

BBR and CUBIC flows get in §4.1 is the extra packets that BBR keeps in the buffer,

which depends on the BDP (C ×RTT). We saw similar trends when we repeated these

experiments for bottlenecks with 25 flows.

4.3 Applying Game Theory 85

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

#
 o

f
CU

BI
C

flo
w

s
at

 t
he

 N
E

Buffer size in BDP

Nash Equilibria

RTT=10 ms

RTT=30 ms

RTT=50 ms

Figure 4.11: Nash Equilibrium distributions between CUBIC and BBR flows with
different RTTs.

4.3.5 Flows with different RTTs

While our model assumes that all the flows have similar RTTs, the RTT distribution on

the Internet can be quite diverse [94]. Even though our model cannot easily be extended

to a multi-RTT setting, we conducted experiments to investigate the NE for flows that

had different RTTs. In particular, we simultaneously launched 30 flows comprising

of three groups of 10 flows with RTT of 10 ms, 30 ms, and 50 ms respectively. These

flows shared a 100 Mbps bottleneck link with buffer sizes varying as multiples of the

BDP (bandwidth-delay product) of the flow with the shortest RTT. We ran all possible

combinations of CUBIC and BBR flows for these flows for three trials and then computed

the Nash Equilibrium distributions just like in our previous experiments. The purpose

of this experiment is not to quantitatively verify the predictions of our model, but to

verify that Nash Equilibrium distributions of CUBIC and BBR can exist in multi-RTT

networks as well. We plot the results in Figure 4.11. We noticed two key trends in NE

between flows with different RTTs:

1. Existence of NE. For all the buffer sizes tested, we were able to find at least one

Nash Equilibrium distribution of CUBIC and BBR flows. In many instances, there

86 Are we heading towards a BBR-dominant Internet?

were multiple NE distributions across trials, but all these distributions roughly had

the same percentage of flows running CUBIC.

2. Nature of the NE. In all Nash Equilibrium distributions, all the flows choosing

to run CUBIC were the flows with the shortest RTTs. In other words, if a Nash

Equilibrium distribution had 15 out of 30 flows running CUBIC, these 15 flows

would comprise of all the ten flows with 10 ms RTT, and five 30 ms RTT flows.

Our results suggest that flows with larger RTTs benefited by switching to BBR more

than flows with shorter RTTs; the reverse is true for CUBIC. This is expected from

our understanding of RTT-fairness for CUBIC and BBR. Loss-based congestion control

algorithms like CUBIC in general tend to favor flows with shorter RTTs [95], because

flows with shorter RTTs are able to get quicker feedback and probe for bandwidth more

frequently. With BBR, the opposite is true, i.e., flows with larger RTTs obtain a larger

share of the bottleneck bandwidth than flows with smaller RTTs [96], because BBR

flows become cwnd-limited and maintain a buffer share directly proportional to their

RTT. When CUBIC and BBR flows with different RTTs compete, it is only natural that

these two opposing trends would complement each other to give rise to NE distributions

with shorter-RTT CUBIC flows and longer-RTT BBR flows.

4.3.6 BBR Predictions applied to BBRv2

Google is working to replace BBR with BBRv2 in the near future [26]. BBR has been

found to be unfair to CUBIC flows in smaller buffers and can take up to half the total

available bandwidth at the bottleneck regardless of flow-wise share [25]. To mitigate

this issue, BBRv2 is designed to be a less aggressive alternative to BBR. At a high level,

BBRv2 behaves like BBR, but because it has a variable cwnd, it is able to react to packet

loss. We repeated the experiments in §4.3.4 for BBRv2 to determine if Nash Equilibrium

distributions exist, and if so, how they would compare to our predictions for BBR.

4.4 Discussion 87

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

#
 o

f
CU

BI
C

flo
w

s
at

 t
he

 N
E

Buffer size in BDP

Region predicted for BBR
80 ms RTT
40 ms RTT
20 ms RTT

(a) 50 flows, 50 Mbps

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

#
 o

f
CU

BI
C

flo
w

s
at

 t
he

 N
E

Buffer size in BDP

Region predicted for BBR
80 ms RTT
40 ms RTT
20 ms RTT

(b) 50 flows, 100 Mbps

Figure 4.12: Nash Equilibrium distributions between competing CUBIC and BBRv2
flows.

Our results in Figures 4.12 suggest that multiple Nash Equilibria also exist when

CUBIC and BBRv2 flows compete at a common bottleneck. This is in line with our

observations in §4.3.2. Because BBRv2 is less aggressive than BBR, the Nash Equilibria

for BBRv2 generally had a higher share of CUBIC flows for the same buffer size when

compared to BBR (see Figure 4.7). Our results also suggest that our current model for

BBR works well for BBRv2 when the RTT is relatively small. Augmenting the model

to improve throughput predictions for BBRv2 remains future work.

4.4 Discussion

Nash Equilibrium for networks with different RTTs. Nash Equilibria were earlier

observed in settings where the competing CUBIC and BBR flows have different base

RTTs [2]. However, one limitation of our model is that the analysis presented in this

chapter does not apply to networks that have flows with different RTTs. This is because

with different RTTs, flows will no longer be symmetric and the state space with all

the possible distributions will grow exponentially. Our proof in §4.3.1 requires that we

linearize the state space of all the possible CCA distributions in a way that the two

conditions discussed in §4.3.2 are met. We have not found a way to do so for a network

88 Are we heading towards a BBR-dominant Internet?

where flows have different base RTTs. While we have results that suggest that Nash

Equilibria generally exist for networks with different RTTs (see §4.3.5), we have not

been able to extend the proof in §4.3.1 to this setting.

Implications on Internet Buffer Sizing. Router buffer sizing is a long-standing

problem [40, 89, 90]. Rules of thumb have been derived over the years and trends have

been moving towards “tiny” buffers [90], to avoid Buffer Bloat [97]. However, given that

BBR keeps 2×BDP packets in flight, CUBIC flows may face starvation if BBR becomes

the dominant TCP variant on the Internet.

Model Performance for large numbers of flows. While our experiments have

validated our model for up to 50 concurrent flows, 50 is still orders of magnitude smaller

than the number of concurrent flows passing through the bottleneck links on the Internet.

It remains to be seen how our predictions will scale to the Internet. However, we see

no reason why qualitatively our predictions would not apply to larger networks with

hundreds of concurrent flows.

More diverse workloads and more complicated metrics. One gap in the

evaluation of our model is that we have only run experiments for long flows. Real

Internet workloads are more diverse, and consist of not only long flows, but also chunky

video traffic, short flows generated by ad services, and latency-sensitive traffic from live

streaming and video calling. Different application traffic is likely to care about more

complex metrics than just throughput. It is also unlikely that the mathematical model

presented here (which models the steady state behavior of CUBIC and BBR) will be

able to accurately replicate the interactions between short flows. Improving our model

and evaluation to handle more diverse and realistic workloads remains future work.

Forced synchronization among CUBIC flows. We observed that the actual

bandwidth share for the NE found is often closer to the CUBIC-Synched bound of our

model (see Figures 4.5). This suggests that for multiple competing CUBIC and BBR

flows, the CUBIC flows can get synchronized. We believe that this is likely because

4.4 Discussion 89

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

BBR partially
limited by cwnd

BBR not limited
by cwnd

BBR limited
by cwnd

Ba
nd

w
id

th
 (

M
bp

s)

Buffer size (BDP)

Ware et al.
BBR's actual bandwidth share

our model

Figure 4.13: Performance of the model in ultra-deep (>100*BDP) buffers.

when all the BBR flows transition (together) from ProbeRTT to ProbeBW, they collec-

tively add many packets to the buffer causing the buffer to overflow and the majority

of the CUBIC flows to experience packet losses at the same time, and they end up

synchronizing.

Poor Performance for ultra-deep buffers. We do not expect the model described

in §4.1 to be applicable in very deep buffers (more than 100 times the BDP). This is

because in such buffers, BBR is not always cwnd limited. When BBR exits its ProbeRTT

phase, it starts with keeping only 1 BDP packets in flight. However, as the flow scavenges

more and more bandwidth during its periodic ProbeBW cycles, it slowly grows the

number of packets it has in flight till it is capped by the cwnd. Since these ProbeBW

cycles happen every 8 RTTs, and in deep buffers these RTTs are much larger than in

shallow buffers, BBR becomes cwnd limited at a much slower rate [25]. Therefore, our

model would always overestimate how well BBR would perform against CUBIC flows in

deep buffers.

To demonstrate this, we conducted a simple experiment with a single CUBIC flow

competing with a single BBR flow at a 50-Mbps bottleneck link, with each flow lasting

for 2 minutes and having a base RTT of 40 ms. We then plotted the bandwidth received

by the BBR flow in buffer sizes ranging from just 1 BDP up to 250 times the BDP. We

can see the extent of our model’s over-estimation in ultra-deep buffers in Figure 4.13. It

90 Are we heading towards a BBR-dominant Internet?

is clear that BBR’s average throughput gradually decreases as the buffer size increases

beyond 60 times the BDP. The actual throughput will dip below our model’s predicted

value when the buffers are deeper than 100 times the BDP. We verified that the BBR

flow was not cwnd-limited at these buffer ranges in these experiments.

Assumption of 2 BDP packets in flight. Our model in §4.1 assumes that BBR

flows always maintain 2 BDP worth of packets in flight. In practice, the actual number

of packets would vary between 1 and 2 BDP, since each ProbeBW phase starts with

approximately 1 BDP of packets. As the ProbeBW phase progresses, the overestimation

of the minimum RTT will cause BBR to increase the number of packets in flight, and the

rate of increase depends on the RTT. For higher RTT values, the number of bandwidth

probes in the 10-second ProbeBW phase will be smaller and so the average number of

packets in flight will be closer to 1 BDP. Our assumption of 2 BDP packets in flight

allows us to achieve good accuracy while keeping the model simple. Nevertheless, it is

likely that it is possible to improve our model by estimating the number of packets in

flight during the ProbeBW phase more accurately.

Tightening the bounds. Currently, our model provides bounds on a the bandwidth

share competing CUBIC and BBR flows can get when they share a bottleneck. There

is scope for making these bounds tighter than they currently are if we can definitively

predict the degree of synchronization between the CUBIC flows running through the

bottleneck. We have verified that when the NE lies close to the CUBIC Synch and

CUBIC De-synch bounds, it is because in those experiments, the CUBIC flows did in fact

synchronize or de-synchronize. Unfortunately, it is hard to predict how well CUBIC flows

will synchronize, which makes tightening the bounds of our current model a challenge.

That said, we have empirically observed that CUBIC flows tend to de-synchronize more

in deeper buffers compared to shallower buffers.

4.5 Summary 91

4.5 Summary

In summary, we showed that BBR sees diminishing returns in its throughput advantage

over CUBIC as the proportion of BBR flows increases. As BBR flows become more

numerous, the average per-flow bandwidth of the BBR flows will drop. This dynamic

suggests that for most realistic network scenarios, there will likely always be a Nash

Equilibrium distribution of CUBIC and BBR flows, where no flows have any incentive

to switch. We thus make a bold prediction that it is unlikely that BBR will completely

replace the CUBIC flows on the Internet in the near future. Even as BBR (or BBRv2)

continues to grow in dominance, we believe that some flows always continue to be CUBIC

for some time to come.

Chapter 5
Containing the Cambrian Explosion in

QUIC Congestion Control

As discussed in Chapter 1, the adoption of QUIC represents a major development in In-

ternet Congestion Control. This is because since it is implemented in the user space, it

represents an easy way for developers to test and deploy new and modified CCAs. Being

cognizant of this development, we inspect how developers are implementing CCAs in the

current crop of QUIC stacks, and how they compare with the existing TCP CCA imple-

mentations that they try to replicate. In this chapter, we investigate how QUIC CCA

implementations risk making the Internet’s CCA landscape even more heterogeneous

than before.

QUIC was first introduced by Google in 2015 to address the limitations of TCP and

to add security enhancements to HTTP [60]. It has since seen rapid adoption and has

been designated as the default transport stack for HTTP3. QUIC is estimated to already

constitute some 30% of downstream traffic in EMEA (Europe, Middle East, and Africa)

and 16% of downstream traffic in North America [98].

While the original motivation behind QUIC was to improve security, QUIC’s proto-

col designers also used this opportunity to redesign many legacy aspects of TCP, like

94 Containing the Cambrian Explosion in QUIC Congestion Control

the handshake, and to introduce multi-streaming. However, for congestion control, most

QUIC developers chose to be conservative and re-implemented standard congestion con-

trol algorithms (CCAs) like CUBIC [99], Reno, and BBR [100]. This is not surprising

since these algorithms are well understood and predictable, thanks to many years of

deployment on the Internet. Their stability properties are especially important since

QUIC already takes up a significant share of today’s Internet traffic [98].

In general, for compatibility with existing CCAs, we expect these QUIC CCA im-

plementations to have the following two properties:

1. Behave like their kernel counterparts. Since the entire motivation behind re-

implementing standard congestion control algorithms is to achieve predictability

and stability, we want QUIC implementations to resemble their corresponding

kernel implementations. In particular, we expect QUIC CCAs to not only achieve

delays and throughputs similar to their kernel counterparts but also to interact

with existing CCAs qualitatively in the same way.

2. TCP friendliness. We want new QUIC congestion control implementations to

co-exist well with existing Internet traffic and be friendly towards other QUIC

and TCP kernel implementations. In particular, it would be disastrous if new

implementations cause significant degradation or starvation of existing flows.

In this chapter, we investigated how closely the CCA implementations for the 11 pop-

ular open-source QUIC stacks listed in Table 5.1 adhere to these expectations. These

stacks were selected because they are all open source, stable, and deployed on the Inter-

net. While it is easy to evaluate TCP-friendliness and qualitative interactions between

different implementations, it is much harder to define the ideal behavior of a congestion

control algorithm. Even if we use a given implementation as the standard reference for a

congestion control algorithm, it is not entirely straightforward how we can quantify how

well a new implementation conforms to this reference implementation. For example, a

95

Table 5.1: List of QUIC/TCP stacks studied and their available CCAs.

Organization Stack Version/Commit Hash CUBIC BBR Reno

Linux kernel TCP Linux 5.13.0-44-generic ✓ ✓ ✓

Facebook mvfst [101] 65a9c066e742620becacc99b7c0ca86200e6a4c4 ✓ ✓ ✓

Google chromium [102] 82a3c71cf5bf2502d5ad90489fe20ce8f8cb3fab ✓ ✓ ✗

Microsoft msquic [103] e6110b62cd8e0d84e6436bde2504e6bc0702921a ✓ ✗ ✗

Cloudflare quiche [104] 9dfeaafb625b08760218def7beb8db133e3f50cb ✓ ✗ ✓

LiteSpeed lsquic [105] 108c4e7629a8c10b9a73e3d95be0a1652e620fb9 ✓ ✓ ✗

Go quicgo [106] 424a66389c01d10678bfb980cfe6faa8524b42b6 ✓ ✗ ✓

H2O quicly [107] d44cc8b21ed0d27ab6d209d0775c3961b2f89f38 ✓ ✗ ✓

Rust quinn [108] f86dd7596d4df31370b294c35501cec8da48b393 ✓ ✗ ✓

Amazon Web Services s2n-quic [109] 17826d9df1c59903beadd1733bbe79ed7d67647e ✓ ✗ ✗

Alibaba xquic [110] 00f622885d91e02c879f8531bc04af7a584faed4 ✓ ✓ ✓

Mozilla neqo [111] 07c2019988a8f0a37f87cbd90f95e906e7b53258 ✓ ✗ ✓

simple fairness-based measure of conformance would not be desirable as it would fail

to capture the algorithmic nuances between different CCA implementations. An ideal

metric for capturing the similarity between two CCA implementations should capture

the following two properties (relative to a reference implementation):

1. Replaceability. How easily can a third-party observer tell if we replaced the

reference implementation with the new implementation?

2. Inherent performance trade-offs. Different congestion control algorithms

represent different trade-offs in a network. Does the new implementation operate

in the same trade-off space as the standard reference implementation?

To this end, we propose a metric called the Performance Envelope (PE) that was built

on these two ideas. To investigate a new QUIC CCA implementation, we sample the

delay (d) and throughput (T) of the new implementation while it competed with the ref-

erence (kernel) implementation in a controlled network environment. These (d, T) pairs

were then plotted on a delay-throughput plane to visualize the delay-throughput trade-

off space for the new QUIC CCA implementation. The region defined by the convex hull

of this point cloud was referred to as the PE of the new QUIC CCA implementation.

To measure the replaceability of a QUIC implementation, the PE of the QUIC im-

96 Containing the Cambrian Explosion in QUIC Congestion Control

(a) A single-cluster PE (b) A multi-cluster PE

Figure 5.1: A single convex hull for the PE does not fully capture low conformance in
quiche CUBIC.

plementation competing with a reference implementation was compared with the PE of

a reference implementation competing with itself. The area of the overlap between these

two PEs was then used as a measure of similarity (called conformance) between the two

implementations (see Figure 5.1a).

However, a naïve definition of the PE (as described in our early work [4]) has its

limitations. For example, we found that plotting the performance envelope with a single

convex hull does not provide us with sufficient granularity to identify low conformance

in some cases. One such example is illustrated in Figure 5.1.

The maximum possible value for conformance, the overlap between the PEs of the

reference and QUIC implementations, is 1. We can clearly see that using a single convex

hull for the PE does not fully capture low conformance in the quiche implementation of

CUBIC in Figure 5.1a. This is because while the overlap between the PEs in Figure 5.1

is relatively large, most of it comprises empty space without any data points. This will

inadvertently cause us to overestimate the similarity between these implementations,

even though the two implementations may exhibit very different behaviors. We address

this issue by clustering the delay-throughput pairs before constructing the final PEs (see

Figure 5.1b).

97

Furthermore, we need a way to provide hints on how the conformance of a QUIC

implementation could be improved. We found several QUIC implementations where

the conformance can be improved by merely tuning their intentionally misconfigured

cwnd and sending rate parameters (§5.3). In such cases, the PE of the reference and

tested QUIC implementations generally have the same shape and the same number of

clusters but are translated to a different region in the delay-throughput plane.

To identify such implementations, we propose an additional metric Conformance

post-Translation (or Conformance-T), that is the maximum conformance that can be

achieved by translating the PE of a QUIC CCA implementation. Generally, a high

Conformance-T would indicate that an implementation’s conformance can be improved

significantly with simple parameter tuning. We show that this parameter tuning can be

guided by the translation vector (∆-throughput, ∆-delay).

In summary, our work advances the state of the art in our understanding of specia-

tion [4, 69] in QUIC CCAs with the following contributions:

1. We present a comprehensive study of 11 QUIC stacks using this enhanced definition

of the PE in both controlled testbeds and on the Internet. Our results show that

while most QUIC CCA implementations are conformant in shallow buffers, they

become less conformant in deep buffers (§5.2.1). In the process, we identified seven

QUIC implementations that had low conformance;

2. We propose new metrics Conformance, Conformance-T, ∆-throughput, and ∆-

delay, that can provide hints on the root cause of low conformance for a QUIC

implementation (§5.1.2);

3. We demonstrate how low-conformance implementations can cause unfairness (§5.2.3)

and subvert our expectations of how we expect different CCAs to interact (§5.2.4);

and

4. We identify implementation-level differences that led to the low conformance and

98 Containing the Cambrian Explosion in QUIC Congestion Control

propose modifications to improve conformance for three QUIC CCA implementa-

tions (§5.3). We were also able to identify instances where low conformance arises

when features that are a part of the TCP stack and not the CCA itself (like Hystart

(RFC 9406) [112]) are not implemented in QUIC stacks.

The traces and source code for all our experiments is available at [33].

Given the large number of QUIC stacks, it seems inevitable that there will be an

increasing number of non-conformant QUIC CCA implementations. Our proposed met-

rics will provide developers with a means to understand how their CCA implementations

deviate from standard kernel implementations and with hints to make the required mod-

ifications to ensure that their CCA implementations are conformant, thus reducing the

likelihood of mistakes that might cause instability and performance degradation to the

Internet.

While we had initially set out to study how we can ensure that future QUIC CCA

implementations are conformant to the standard kernel implementations, we have come

to realize that the standard kernel implementations are also moving targets that will

evolve with time. While not covered in this thesis, the question of how QUIC CCA

implementations can keep up with new RFCs and evolving kernel implementations is

also an important concern.

5.1 Methodology

Our goal is to quantify the conformance of QUIC implementations of CUBIC, BBR, and

Reno for the QUIC stacks in Table 5.1. In this section, we describe the PE as well as

the Conformance, Conformance-T, ∆-throughput, and ∆-delay metrics.

5.1 Methodology 99

5.1.1 Measuring similarity between implementations

To understand how well the CCAs implemented in a QUIC stack compare to the standard

reference implementations, we needed a way to quantify and visualize the difference. We

also want to be able to do so in a code-agnostic way, i.e. we should not have to read the

code to pick out any deviations.

One straightforward way to identify deviations would be to compare the cwnd evo-

lution to a reference implementation running in identical network conditions [?]. How-

ever, we argue that this is impractical in the context of QUIC. Given that QUIC is

implemented in the user space, it is unreasonable to expect these implementations to ac-

curately replicate the complex waveforms in algorithms like CUBIC exactly. User space

implementations of these algorithms generally have a fast path and a slow path that

serves to approximate the behaviour of these algorithms, but they do not exactly match

them. If the developers set out to exactly match the cwnd evolution of these algorithms,

they would not be able to realistically do so in the user space without significant impact

on performance.

An alternative is to define a more coarse-grained definition for conformance in the

context of fairness. If a new implementation of a congestion control algorithm is as

fair/unfair to a reference flow as the standard implementation, we can say that it is

behaving in a manner conformant to the reference implementation. However, we are of

the view that such an approach will not adequately capture the finer differences between

different congestion control algorithms.

Our key insight is that a good measure of conformance should be based on a met-

ric that captures the different trade-offs of different congestion control algorithms. To

this end, we propose the Performance Envelope (PE), a multi-dimensional metric for

comparing the relative behaviour of different implementations of different congestion

control algorithms. The Performance Envelope is a visual representation of the different

100 Containing the Cambrian Explosion in QUIC Congestion Control

trade-offs made by different congestion control algorithms.

In this chapter, we will evaluate the various implementations of standard conges-

tion control algorithms in QUIC by looking at their throughput and delay trade-offs.

We decided to choose these two metrics, because the trade-off between throughput and

delay is the key consideration in the design of most modern congestion control algo-

rithms [14, 16, 22, 55, 93]. Therefore, even if an implementation is not completely accu-

rate, it should at least offer the same throughput-delay tradeoffs as the reference (kernel)

implementation. However, depending on the application, the performance envelope can

be adapted to capture the trade-offs between other network metrics as well.

5.1.2 Defining the Performance Envelope

To determine the PE for a test implementation, a flow running the test implementation

is launched alongside a competing flow that runs the corresponding reference (Linux

kernel TCP) implementation. Both flows are set to the same RTT and run through

a bottleneck with a constant link capacity and a fixed-size droptail buffer. The flows

run for 120 seconds to ensure that they have sufficient time to converge to steady state.

The start and end of the flow traces are also truncated by 10% to remove the transient

behaviors. The throughput and delay time series data (computed offline via packet trace)

of the test implementation is then sampled every 10 RTTs and plotted pair-wise (d, T)

on a delay-throughput plane as a point cloud. The region defined by the convex hull

of this point cloud is the PE for the implementation. Empirically, we have found that

sampling the time-series throughput and delay data at this rate is sufficient to capture an

implementation’s PE. In other words, sampling more frequently does not substantially

affect the shape of the PE for a CCA implementation.

Handling outliers. Since the data points that are used to determine the PE are

instantaneous values, there will be outliers. Earlier, we removed these outliers by elimi-

nating 5% of the points with the largest Euclidean distance from the centroid of the PE.

5.1 Methodology 101

However, we found that there is no guarantee that the points furthest from the centroid

are necessarily outliers and by doing so, we risk artificially reducing the variance in the

PE. Ideally, we want to remove the outliers that are points that arise from natural net-

work variation across trials and not artifacts of the implementation itself. Therefore, we

decided that a more principled way to remove outliers was to capture (d, T) pairs over

multiple trials and use the intersection of the convex hulls produced by all these trials

to be the final PE. In practice, it turns out that our approach also removes roughly 5%

of the points on average for our experiments.

One convex hull is not enough. From Figure 5.1, we can see that the distribution

of the points in the point cloud is often not uniform. Hence, if we use only a single convex

hull, it is plausible that we may include large regions of empty space that do not contain

any points. In other words, using only a single convex hull will often result in the

overestimation of an implementation’s conformance. To address this issue, instead of a

single convex hull, we use a clustering algorithm to group data points into clusters and

then calculate convex hulls for each individual cluster. The final PE is then the set of

all convex hulls.

How many clusters is enough? We use the standard k-means clustering algo-

rithm [113] to compute clusters from our set of data points in the throughput-delay plot.

Usually, the number of clusters for the k-means algorithm is determined using the elbow

method, which selects the inflection point for the mean squared error of the resulting

clusters. However, in our case, we found that the regular elbow method was not satis-

factory because there was no obvious inflection point if we considered the mean squared

error.

On the other hand, we can see in Figures 5.2 and 5.3 that a PE often has a “natural”

number of clusters arising from the characteristics of the CCA. For BBR, this natural

number is generally 2 (because of its distinct ProbeBW and ProbeRTT phases, see Fig-

ure 5.2). For CUBIC and Reno, natural clusters still exist, but there does not seem to

102 Containing the Cambrian Explosion in QUIC Congestion Control

Figure 5.2: Two distinct clusters corresponding to TCP BBR’s ProbeBW (red) and
ProbeRTT (blue) phases.

(a) TCP CUBIC (b) TCP Reno

Figure 5.3: Clusters for CUBIC and Reno are less distinct and tend to form around
different throughput levels.

be a fixed number (see Figure 5.3).

In order to determine this “natural” number of clusters algorithmically, we ran the

k-means algorithm for all k ≥ 1 for each trial. For each k, each trial will produce a PE

with k convex hulls. The final PE for each k is then computed as the intersection for

all the convex hulls over all the trials. For each of these PEs, we compute and plot the

intersection over union (IOU) R, which we define as the proportion of the total data

points for all the trials contained in the PE. This is effectively the amount of information

retained in the PE for each value k.

5.1 Methodology 103

IOU = 0.9 IOU = 0.8

IOU = 0.5 IOU = 0.3

k=1

k=3

k=2

k=4

1 2 3 4 5

1
knee

of clusters

IO
U

Figure 5.4: Determining k, the number of clusters for a Performance Envelope. IOU
= Intersection over Union.

What we found was that R is a strictly decreasing function of the number of clusters

k, since as the number of clusters increases, the size of each cluster becomes smaller

and the final intersection will contain fewer data points. Because it was indeed true

that there was a “natural” number of clusters for each implementation, we found that R

drops most steeply at some k for all the instances that we studied. We use the value of

k before the drop as the number of clusters for the final PE. We illustrate this iterative

process in Figure 5.4, with the blue and red point clouds representing data points from

two trials of the same measurement. We removed the outliers from each trial before we

computed the number of clusters for a PE so that the outliers do not impact the number

of clusters in the PE for a CCA implementation.

5.1.3 Quantifying similarity with Conformance and Conformance-T

The Performance Envelope, as described in §5.1.2, is not only a convenient way to visu-

alize the throughput-delay trade-off a CCA implementation makes, but also allows us to

compare two different CCA implementations. Given that the PE is a 2D region in the

throughput-delay plane, we can use the overlap between the PEs of different implemen-

tations to estimate how similar they are. Since we are interested in understanding how

104 Containing the Cambrian Explosion in QUIC Congestion Control

well a QUIC implementation conforms to its kernel counterparts, we formally define this

overlap between two PE as Conformance.

Conformance. The conformance of an implementation is determined by calculating

the overlap its PE has with the PE of the reference implementation. The overlap is

weighted by the number of points present in the overlapping region. In particular,

Conformance = # of points in the overlapping region
total # of points in both PEs

Clearly, the maximum possible value of conformance is 1 (complete overlap) and the

minimum value is 0 (no overlap).

Other than measuring the conformance of different CCA implementations more ac-

curately, we also want a way to deduce how it might be possible to improve the confor-

mance of an implementation via simple parameter tuning. Modern congestion control

algorithms and QUIC stacks can be quite complex, and therefore manually checking and

tuning all their parameters is not tractable. What we need are hints for the implementor

on what tuning might be needed to improve a CCA implementation’s conformance. We

found many instances where this is possible. In such cases, the PE of an implementation

generally has the same shape and number of clusters as the reference implementation

but is merely translated to another region in the delay-throughput plane.

Conformance-T. To identify implementations that can likely be fixed with param-

eter tuning, we compute the translation that will maximize the intersection between the

respective clusters of data points. We refer to this overlap post-translation as the Con-

formance post-Translation (or Conformance-T). To compute Conformance-T, we first

derive a rough translation vector as the vector difference between the centroids of the

data points for the implementation PE and for the reference PE, respectively. We then

obtain the translation vector (∆-throughput, ∆-delay) by searching the vicinity for a

translation that achieves the maximal overlap between the two PEs. The local search

5.1 Methodology 105

is performed within a bounding box that allows the PE to vary by up to 20% of the

maximum throughput and delay. In most cases where the Conformance-T is high, the

initial centroid-based translation is sufficient to achieve the maximum overlap. In gen-

eral, a high Conformance-T value for a low-conformant implementation suggests that the

implementation’s conformance can be significantly improved with just simple parameter

tuning.

To understand how Conformance-T works, consider the following experiment: we

know that BBR multiplies its BDP estimate with a constant called cwndgain to deter-

mine its cwnd. By default, cwndgain is set to 2 in the Linux kernel. We modified the

kernel version of BBR by changing its cwndgain and measured the Conformance and

Conformance-T values for modified implementations with a range of cwndgain values

from 1.0 to 4.0. We plot the resulting values for Conformance-T in Figure 5.5. Unsur-

prisingly, Conformance and Conformance-T are highest when cwndgain is 2.0. As the

gap in cwndgain in the modified implementation increases, the Conformance drops as ex-

pected, even though the algorithmic behavior of the modified version is almost identical

to that of the vanilla kernel BBR implementation. On the other hand, the Conformance-

T remains relatively high. This suggests that Conformance-T is a relatively robust way

to capture shifts in observed behavior arising from parameter tuning.

Parameter tuning. It turns out that the translation required to compute Conformance-

T also provides us with hints on the systematic difference between a QUIC implementa-

tion and its corresponding reference implementation. We capture the 2 components in

the required translation as the translation vector (∆-throughput, ∆-delay).

Consider the two knobs a congestion control algorithm usually uses to regulate how

aggressive it is: (i) its sending rate and (ii) its cwnd. For QUIC implementations showing

low conformance but a high value of Conformance-T, we can deduce which of these

knobs have been improperly tuned and correct for them. For example, if the cwnd of an

implementation is more than it should be, it would typically have higher throughput and

106 Containing the Cambrian Explosion in QUIC Congestion Control

Figure 5.5: Conformance and Conformance-T values for modified versions of TCP
BBR.

higher delay since it puts more packets in flight. This would show up as a large positive

∆-throughput and a large positive ∆-delay. We see this trend in Figure 5.5 where we

see both ∆-throughput and ∆-delay increase as the cwndgain is increased.

On the other hand, if the implementation sets a correct cwnd but sends its packets

at a larger sending rate than it should, we would see a large positive ∆-throughput but

a negligible increase in ∆-delay. We see this behavior in mvfst BBR (See Figure 5.10)

which we had earlier identified to have set its pacing gain to a value higher than the

default [4].

5.1.4 Experiment Setup

Our experiments were conducted on a testbed with two Linux machines (Ubuntu 20.04,

kernel version 5.13.0-44-generic) connected via a 1 Gbps Ethernet cable. To generate

the QUIC flows, we installed the open-source QUIC stacks on both machines and used

the test clients/servers provided. To generate the TCP flows, we used the iperf3 [114]

tool.

We used a modified version of our open-source tool QUIC Bench [33] to run our

experiments and compute our new metrics Conformance-T, ∆-throughput, and ∆-delay.

5.1 Methodology 107

Table 5.2: List of Known IETF QUIC/TCP stacks.

Organization Stack Open
So

urc
e?

Im
ple

men
ts

CCA?

Sta
ble

?

Dep
loy

ed
?

Eva
lua

ted
?

Facebook mvfst [101] ✓ ✓ ✓ ✓ ✓

Google chromium [102] ✓ ✓ ✓ ✓ ✓

Microsoft msquic [103] ✓ ✓ ✓ ✓ ✓

Cloudflare quiche [104] ✓ ✓ ✓ ✓ ✓

LiteSpeed lsquic [105] ✓ ✓ ✓ ✓ ✓

Go quicgo [106] ✓ ✓ ✓ ✓ ✓

H2O quicly [107] ✓ ✓ ✓ ✓ ✓

Rust quinn [108] ✓ ✓ ✓ ✓ ✓

Amazon Web Services s2n-quic [109] ✓ ✓ ✓ ✓ ✓

Alibaba xquic [110] ✓ ✓ ✓ ✓ ✓

Mozilla neqo [111] ✓ ✓ ✓ ✓ ✓

Akamai akamaiquic [115] ✗ - - - ✗

Apple applequic [116] ✗ - - - ✗

Apache ats [117] ✓ ✓ ✓ ✗ ✗

F5 f5 [118] ✓ ✗ ✗ ✗ ✗

Haskell haskellquic [117] ✓ ✗ ✗ ✗ ✗

Java kwik [119] ✓ ✗ ✗ ✗ ✗

nghttp ngtcp2 [120] ✓ ✗ ✗ ✗ ✗

nginx nginx [121] ✓ ✗ ✗ ✗ ✗

Pico picoquic [122] ✓ ✓ ✗ ✗ ✗

Python aioquic [123] ✓ ✗ ✓ ✓ ✗

Quant quant [124] ✓ ✓ ✗ ✗ ✗

We configured the socket buffer sizes for both UDP and TCP to be 12,582,912 bytes in

order to have a fair comparison between TCP and QUIC.

As shown in Table 5.2, there are currently at least 22 modern QUIC stacks [28]

available. However, in this chapter, we only evaluated 11 of them. We picked these 11

stacks because they are either used by major public companies, such as Google [102],

Facebook [101], and Microsoft [103] or are the de-facto standard QUIC libraries in pro-

gramming languages such as Go [106] or Rust [108]. The remaining stacks that we

did not evaluate are either closed-sourced, had no stable version available, or did not

implement congestion control.

108 Containing the Cambrian Explosion in QUIC Congestion Control

(a) 5 BDP (deep) buffer (b) 1 BDP (shallow) buffer

Figure 5.6: Conformance becomes significantly worse in 5 BDP (deep) buffers. (10 ms
RTT, 20 Mbps)

5.2 Measurement Results

In this section, we present the results of our evaluation of the 11 QUIC stacks listed

in Table 5.1. In §5.2.1, we compare the PEs of the QUIC implementations of CUBIC,

Reno, and BBR to their corresponding Linux TCP implementations (hereafter referred

to as the reference implementations) and calculate their conformance with respect to

these reference implementations.

To investigate the general fairness between different implementations, we also per-

formed a bandwidth-share-based analysis of all pairwise combinations of the 11 QUIC

stacks. We present the results in §5.2.3. We also discuss how we can expect low-

conformance QUIC implementations to subvert our expectations of how CUBIC and

BBR interact in §5.2.4.

All evaluations were done under a variety of network conditions that were emulated

by varying the network parameters as follows:

1. RTT (10 ms and 50 ms);

2. bottleneck bandwidth (20 Mbps and 100 Mbps); and

3. bottleneck buffer size (0.5, 1, 3, 5 times the BDP)

To ensure that buffer sizes are comparable across all the RTT and bottleneck bandwidth

combinations, we normalize them as multiples of the Bandwidth-Delay Product (BDP).

5.2 Measurement Results 109

Table 5.3: Summary of low-conformant implementations (1 BDP Buffer).

Stack Type Conf Conf-T ∆-tput ∆-delay
chromium CUBIC 0.6 0.74 +3 Mbps 0 ms
neqo CUBIC 0 0.62 −6 Mbps −5 ms
quiche CUBIC 0.08 0.55 +5.5 Mbps 0 ms
xquic CUBIC 0.55 0.64 0 Mbps −5 ms
mvfst BBR 0 0.7 +9 Mbps 0 ms
xquic BBR 0.15 0.42 +4 Mbps 0 ms
xquic Reno 0.38 0.81 −4 Mbps −3 ms

All network parameters were set using tc and Mahimahi [125] and each experiment was

repeated 5 times.

We note here that all our Performance Envelope and conformance measurements

are done over relatively stable network profiles with constant bottleneck bandwidths

and simple droptail buffers. This is because while trying to understand how well QUIC

implementations of standard CCAs resemble their kernel counterparts, we want any

deviations to arise from the implementation and the QUIC stack itself, and not from

the inherent variability of the network profile. It is for this reason that we evaluate the

Performance Envelope with simple 2-flow experiments without any background traffic.

5.2.1 Conformance of CCA implementations of mainstream QUIC stacks

As we can see in Figure 5.6, the bottleneck buffer size has a significant impact on

conformance. In particular, we can see from Figure 5.6a, that all implementations have

poor conformance in 5 BDP (deep) buffers. Since this is a trend consistent across all

stacks, it is plausible that the root cause of low conformance in deeper buffers is some

artifact of the QUIC standard that becomes more pronounced when the buffers are

larger. The investigation of this hypothesis remains as future work.

In general, the majority of the stacks are relatively conformant in shallow buffers as

shown Figure 5.6b. There are several outliers to this trend, with some implementations

110 Containing the Cambrian Explosion in QUIC Congestion Control

(a) chromium, Conf.= 0.6
Conf.-T= 0.74, ∆-tput= +3, ∆-delay= 0

(b) neqo, Conf.= 0
Conf.-T= 0.62, ∆-tput= −6,

∆-delay= −5

(c) quiche, Conf.= 0.08
Conf.-T= 0.55, ∆-tput= +5.5,

∆-delay= 0

(d) xquic, Conf.= 0.55
Conf.-T= 0.64, ∆-tput= 0, ∆-delay= −5

Figure 5.7: QUIC CUBIC implementations with low conformance for 1 BDP buffers.

showing very low conformance (<0.5) even in shallow 1 BDP buffers. From Figure 5.6b,

we can identify the 7 low-conformant stacks in red. The results for these stacks (in 1

BDP buffers) are summarized in Table 5.3. xquic CUBIC is included in the list, despite

having conformance marginally greater than 0.5, because it was found to be extremely

unfair to other implementations (§5.2.3).

In §5.3, we describe modifications that can make xquic BBR and quiche CUBIC

more conformant; for xquic CUBIC, we were able to identify the root cause for the low

conformance. The PEs for non-compliant CUBIC and BBR QUIC implementations are

shown in Figures 5.7 and 5.8 and the PEs for the sole non-compliant Reno implemen-

5.2 Measurement Results 111

(a) mvfst, Conf.= 0
Conf.-T= 0.7, ∆-tput= +9, ∆-delay= 0

(b) xquic, Conf.= 0.15
Conf.-T= 0.42, ∆-tput= +4, ∆-delay= 0

Figure 5.8: QUIC BBR implementations with low conformance for 1 BDP buffers.

(a) 1 BDP buffer, Conf.= 0.38
Conf.-T= 0.81, ∆-tput= −4,

∆-delay= −3

(b) 3 BDP buffer, Conf.= 0.14
Conf.-T= 0.67, ∆-tput= −5,

∆-delay= 0

(c) 5 BDP buffer, Conf.= 0.08
Conf.-T= 0.6, ∆-tput= −6,

∆-delay= 0

Figure 5.9: Performance envelopes for xquic Reno for different bottleneck buffer sizes.

tation are plotted in Figure 5.9. While we performed measurements over a large variety

of network configurations as described in §5.2, link speed and RTT had a marginal im-

pact on the results and so we only produce representative plots varying the buffer sizes

unless stated otherwise. It is likely that link speed and RTT do not have a pronounced

effect because we normalize our buffer sizes by the BDP in our relatively stable network

profiles. This trend may not hold in networks with highly volatile bandwidth variations,

like 5G networks.

112 Containing the Cambrian Explosion in QUIC Congestion Control

(a) 1 BDP buffer, Conf.= 0
Conf.-T= 0.7, ∆-tput= +9,

∆-delay= 0

(b) 3 BDP buffer, Conf.= 0.01
Conf.-T= 0.71, ∆-tput= +2,

∆-delay= −5

(c) 5 BDP buffer, Conf.= 0
Conf.-T= 0.68, ∆-tput= +2,

∆-delay= 0

Figure 5.10: Performance envelopes for mvfst BBR. (Conf.=Conformance)

(a) 1 BDP buffer, Conf.= 0.12
Conf.-T= 0.42, ∆-tput= +4,

∆-delay= 0

(b) 3 BDP buffer, Conf.= 0
Conf.-T= 0.53, ∆-tput= +3,

∆-delay= +25

(c) 5 BDP buffer, Conf.= 0
Conf.-T= 0.56, ∆-tput= +4,

∆-delay= +60

Figure 5.11: Performance envelopes for xquic BBR. (Conf.=Conformance)

5.2.1.1 CUBIC

The implementations of CUBIC in chromium, neqo, quiche, and xquic had low confor-

mance. We had earlier found the modifications needed to make chromium CUBIC more

conformant [4]. To build on our earlier work, we describe how we can mitigate the low

conformance for quiche CUBIC and xquic CUBIC in §5.3.

5.2.1.2 BBR

We found BBR implementations in mvfst and xquic to have low conformance. The

conformance for mvfst was better for deep buffers (see Figure 5.10), while for xquic,

5.2 Measurement Results 113

Figure 5.12: Conformance of various QUIC stacks when tested on AWS. Link speed
was locally limited to 100 Mbps.

the lack of conformance became worse in deep buffers (see Figure 5.11). However, both

these implementations show significantly high Conformance-T values. The positive ∆-

throughput for both these implementations suggests that they might be reasonably con-

formant implementations of BBR with some parameter tuning. We had earlier high-

lighted that mvfst BBR multiplies its final sending rate by 120% in order to improve

throughput [4]. We verified that reducing the send rate to 100%, mvfst BBR will be-

come more conformant. We show in §5.3 that a similar modification can also improve

the conformance of xquic BBR.

5.2.1.3 Reno

QUIC Reno implementations are generally conformant for most QUIC stacks. The

conformance in deeper buffers is also relatively better than CUBIC and BBR. This is

likely because Reno is the simplest algorithm among the three CCAs investigated, and

is thus easier to implement correctly. The only exception among them is xquic, as

shown in Figure 5.9. The fact that even a simple CCA like Reno is non-conformant for

xquic suggests that there might be a larger issue with the xquic stack itself, given that

all its CCA implementations show poor conformance. Upon investigation, we could not

find anything that was clearly wrong with the xquic CCA implementations, suggesting

that the root cause was beyond algorithmic parameters and correctness of the CCA

implementation. Determining the exact cause of the observed differences remains future

work.

114 Containing the Cambrian Explosion in QUIC Congestion Control

(a) CUBIC vs CUBIC, 1 BDP (shallow) buffer

(b) Reno vs Reno
1 BDP (shallow) buffer

(c) BBR vs BBR
1 BDP (shallow) buffer

Figure 5.13: Throughput ratios for competing implementations on CUBIC, Reno, and
BBR (20 Mbps, 50ms RTT).

5.2.2 Investigating Conformance “in the Wild”

We repeated our experiments in §5.2.1 on the Internet. In these measurements, the

senders were run on aws instances and connected to receivers on physical servers in our

lab. We limited the link speed to 100 Mbps at the server. We measured the ping latency

before every experiment and added additional delay using Mahimahi [125] to keep the

RTT constant at 50 ms across all trials. Like before, the results of these experiments are

plotted as a heatmap in Figure 5.12. We found the conformance numbers to be similar

to our results for 1 BDP buffer in our testbed (see Figure 5.6b). While we were tempted

to conclude that this hints that the buffers on the Internet are shallow, we refrain from

making any such claim since a CCA’s performance on the Internet can be impacted by

other network artifacts as well.

5.2 Measurement Results 115

(a) 1 BDP (shallow) buffer. Expected to be red. (b) 5 BDP (deep) buffer. Expected to be blue.

Figure 5.14: Different implementations of CUBIC and BBR competing with each other
(a throughput ratio of 1 means the BBR flow starves the CUBIC flow.)

5.2.3 Fairness between Implementations

The PE only compares the time series behavior of QUIC implementations to their kernel

counterparts, which can provide us an estimate of how faithfully QUIC CCA implemen-

tations conform to the reference implementations. However, no matter how hard devel-

opers might try to reproduce the behaviors of the kernel implementations, there will be

overheads, since the QUIC stack CCA implementations run in the user space. There

will also likely be some inherent unfairness between algorithms. It is also inevitable that

some organizations will want to modify and tune their congestion control algorithms for

their own applications and therefore lead to low conformance by design.

For such cases, we would still be keen to ensure that new implementations can co-

exist with other kernel and QUIC CCA implementations without causing instability

or significant degradation. To determine if new implementations are friendly to other

implementations, we do a simple bandwidth-share-based analysis of the pairwise com-

binations of all 23 QUIC CCA implementations investigated in this chapter. Moreover,

this serves as an extension to the conformance analysis presented in §5.2.1 and a sanity

check that high conformance is highly correlated to fairness to other implementations.

In these experiments, the two competing flows share a 20 Mbps bottleneck link, 50 ms

RTT, and a 1 BDP buffer. The bandwidth share is computed as Tx
Tx+Ty

and Ty

Tx+Ty
where

116 Containing the Cambrian Explosion in QUIC Congestion Control

Tx and Ty are the throughputs of the two competing flows averaged across 5 trials. If

the bandwidth share is greater than 0.5 for any flow, it implies that the flow has more

than a fair share of the bandwidth.

Since it is well known that different congestion control algorithms can be unfair to

each other [3, 25], we looked into fairness between implementations of the same CCAs.

We plot the throughput ratios for competing implementations of CUBIC, BBR, and

Reno in Figure 5.13. If we compare these results to the implementations earlier iden-

tified as being low-conformant in Table 5.3, it is not surprising to see which QUIC

implementations of CUBIC, Reno, and BBR are overly aggressive. chromium CUBIC,

quiche CUBIC, and xquic CUBIC (all previously identified low-conformant implemen-

tations of CUBIC) were unfair to all other implementations of CUBIC.

Similar trends exist for xquic BBR, mvfst BBR, and xquic Reno, which also show

low conformance. We also note that lsquic CUBIC also shows some degree of unfairness

despite having high conformance (0.76). This suggests that while low conformance is

likely to lead to unfairness, high conformance does not necessarily result in fairness,

so it is still important to do a bandwidth-share-based analysis for new QUIC CCA

implementations.

5.2.4 Contradicting known trends in inter-CCA fairness

Given the current heterogeneous congestion control landscape on the Internet, it is im-

portant for interactions between different congestion control algorithms to be consistent

and predictable. In particular, the interactions between CUBIC and BBR, the two

most dominant congestion control algorithms on the Internet, has been a hot topic in

congestion control research over the past few years [3, 25, 126].

In particular, it is well known that BBR will achieve higher bandwidth than CUBIC

when they compete in shallow buffers due to CUBIC backing off frequently and BBR

being largely loss-agnostic. Also, CUBIC is expected to achieve higher throughput than

5.3 Fixing low-conformance implementations 117

BBR in deep buffers since CUBIC is a buffer-filler [3, 25]. In other words, Figure 5.14a

is expected to be all red, and Figure 5.14b is expected to be all blue.

However, we see in Figure 5.14 that some QUIC implementations of CUBIC and

BBR do not conform to these expectations. In particular, we see that in shallow buffers

xquic CUBIC outperforms most BBR implementations (Figure 5.14a); in deep buffers,

xquic BBR and mvfst BBR outperforms other CUBIC implementations. All three

of these implementations were earlier identified as showing very low conformance (Ta-

ble 5.3). This shows that in addition to introducing unfairness, low-conformant imple-

mentations can potentially subvert our expectations of how we expect standard conges-

tion control algorithms to interact.

5.3 Fixing low-conformance implementations

QUIC CCA implementations might not behave like their Linux TCP counterparts for

a number of reasons: (i) the implementation might not conform to existing standards;

(ii) the algorithm parameters might be set differently; or (iii) because of implementation

artifacts within the QUIC stack. As we discussed in §5.1.3, our new proposed metrics

∆-throughput (abbreviated as ∆-tput), and ∆-delay are often helpful in providing us

with hints on the root cause of low conformance. In this section, we describe how we

managed to improve the conformance of some of the low-conformance implementations

identified earlier in §5.2. Most of our modifications required only a small number of lines

of code (LoC). We summarize our findings in Table 5.4.

Differences in implementation. We had earlier proposed modifications to make

chromium CUBIC and mvfst BBR more conformant [4]. We verified that these modifi-

cations are valid using our enhanced definition of the PE and Conformance. In addition,

we also found modifications that could make xquic BBR and quiche CUBIC more

conformant.

118 Containing the Cambrian Explosion in QUIC Congestion Control

Table 5.4: Summary of successful modifications to low-conformant implementations (1
BDP buffer).

Original implementation Modified implementation
Fixed? Stack Type Conf Conf-T ∆-tput ∆-d Conf Conf-T ∆-tput ∆-delay LoC#Remarks

✓ chromium+CUBIC 0.6 0.74 +3 Mbps 0 ms 0.78 0.85 0 Mbps 3 ms 1 Emulated flows reduced from 2 to 1
✓ mvfst+ BBR 0 0.7 +9 Mbps 0 ms 0.8 0.8 0 Mbps 0 ms 2 pacing gain reduced from 1.25 to 1
✓ xquic BBR 0.15 0.42 +4 Mbps 0 ms 0.38 0.47 0 Mbps -2 ms 2 cwnd gain reduced from 2.5 to 2
✓ quiche CUBIC 0.08 0.55 +5.5 Mbps 0 ms 0.55 0.66 +2 Mbps 0 ms 14 Disabled RFC8312 [9]

✗* xquic CUBIC 0.55 0.64 0 Mbps -5 ms - - - - - does not implement HyStart [112]
0.72 0.81 -2 Mbps 0 ms - - - - - Compared to CUBIC w/o HyStart

✗ xquic Reno 0.38 0.81 -4 Mbps -3 ms - - - - - Implementations verified to be
compliant with existing standards.✗ neqo CUBIC 0 0.62 -6 Mbps -5 ms - - - - -

Lines of code in required modification.
+ Earlier identified and fixed [4].
* Implementation difference identified but not fixed. Implementation found to be conformant to TCP CUBIC with HyStart
disabled.

The Conformance-T value for xquic BBR was almost triple its conformance, which

suggested that xquic BBR could potentially be made significantly more conformant by

parameter tuning. Upon investigation, we found its cwndgain was set to 2.5 instead

of the RFC-recommended value of 2. By setting the cwndgain to 2, we were able to

marginally improve conformance as shown in Figure 5.15.

After reviewing the implementation of quiche CUBIC, we discovered that RFC

8312 [127] was implemented. This draft proposes the rolling back of any back-off in the

cwnd if a packet loss was deemed to be spurious. This mechanism has in fact not yet

been implemented in the Linux kernel. When we disabled it in quiche CUBIC, we saw

an immediate improvement in its conformance from 0.08 to 0.55 as shown in Figure 5.16.

In general, we would expect QUIC CCA implementations to lag behind developments in

the kernel. In this case, we have found a QUIC CCA implementation that leads kernel

development.

Missing Mechanism. When we analyzed the implementation of xquic CUBIC,

we found that TCP HyStart (RFC 9406) [112] was not implemented. TCP HyStart

is a mechanism present in the Linux kernel that implements a modified slow start for

CUBIC, where we will exit Slow Start when we see an increase in end-to-end delay. This

makes the Hystart dramatically less aggressive than the traditional slow start. To verify

5.3 Fixing low-conformance implementations 119

(a) xquic BBR original, Conf.= 0.15
Conf.-T= 0.42, ∆-tput= +4, ∆-delay= 0

(b) xquic BBR modified, Conf.= 0.38
Conf.-T= 0.47, ∆-tput= 0, ∆-delay= −2

Figure 5.15: xquic BBR’s conformance before and after reducing cwnd gain from 2.5
to 2.

that this missing mechanism was the main cause of low conformance, we evaluated the

conformance of xquic CUBIC with respect to TCP CUBIC with HyStart disabled. As

shown in Table 5.4, the conformance was indeed much higher. We did not attempt to

implement HyStart in xquic CUBIC to make it more conformant because HyStart is

relatively complicated and we had already identified the root cause of low conformance.

Indications of wider stack-level issues. When we reviewed the implementations

of xquic Reno and neqo CUBIC, we found them to be compliant with the standard

algorithms. The parameter settings are also correct. This suggests that the low con-

formance is likely due to some artifact(s) in the QUIC stack rather than in the CCA

implementation. This means that xquic developers need to pay attention not only to the

implementations of the CCA but also to the implementation of the QUIC stack in order

to achieve high conformance. The investigation into the low conformance of xquic Reno

and neqo CUBIC is left as future work.

120 Containing the Cambrian Explosion in QUIC Congestion Control

(a) quiche CUBIC original, Conf.= 0.08
Conf.-T= 0.55, ∆-tput= +5.5, ∆-delay= 0

(b) quiche CUBIC modified, Conf.= 0.55
Conf.-T= 0.66, ∆-tput= +2, ∆-delay= 0

Figure 5.16: quiche CUBIC’s conformance before and after disabling its detection of
spurious packet losses (RFC8312 [9]).

5.4 Discussion

Given the low conformance that we have identified in modern QUIC stacks, we believe

that QUIC congestion control research deserves more attention and further study as

the results of classic CCA research may no longer apply. Fully understanding the in-

teractions and impact of new QUIC stacks is likely to be a continuous process as these

implementations morph with time. Also, we recognize that there are some limitations

in our current measurement study.

Refining bandwidth-share analysis. The throughput ratios discussed in §5.2.3

provide an estimate of how well implementations can coexist with each other. However,

in the future, we would like to refine our approach to measuring coexistence and general

intra-CCA friendliness. In addition to running experiments over a larger range of network

conditions, we would also like to experiment with different applications and measure

their application-level metrics (such as QoE for video streaming). In our experiments,

we launch both flows together. It is likely helpful to understand the impact of different

start times and different flow durations on fairness.

5.4 Discussion 121

(a) mvfst BBR original, Conf.= 0.0
Conf.-T= 0.0, ∆-tput= +0.0, ∆-delay= 0

(b) mvfst BBR modified, Conf.= 0.0
Conf.-T= 0.0, ∆-tput= +0.0, ∆-delay= 0

Figure 5.17: mvfst BBR’s conformance before and after reducing its pacing gain.

Extending the Performance Envelope to other applications. Besides bench-

marking congestion control applications, the performance envelope also has the potential

to serve as a tool for helping application choose their desired congestion control algo-

rithms. Different applications usually value different network metrics. For example,

live-streaming applications will generally value low latency, in contrast to applications

that perform bulk downloads and value high throughput. Such applications can possibly

leverage the performance envelope to identify the trade-off space they want to operate

in and then select a congestion control algorithm whose performance envelope has the

maximum overlap with their desired performance envelope.

Systematic Root Cause Analysis. While the methodology applied in this chap-

ter has largely been successful in identifying low-conformance implementations of con-

gestion control algorithms, we would like to do more to aid the debugging of these

implementations. We feel that time series graphs (such as the ones in Figure 5.16) and

Conformance-T are a good starting point in investigating which aspects an implementa-

tion may be differing in (such as cwnd or the sending rate). In the future, we would also

like to automatically extract key parameters from implementations and try to correlate

them with ∆-throughput and ∆-delay values of their Performance Envelopes. There is

122 Containing the Cambrian Explosion in QUIC Congestion Control

(a) chromium CUBIC original, Conf.= 0.0
Conf.-T= 0.0, ∆-tput= +0.0, ∆-delay= 0

(b) chromium CUBIC modified, Conf.= 0.0
Conf.-T= 0.0, ∆-tput= +0.0, ∆-delay= 0

Figure 5.18: chromium CUBIC’s conformance before and after changing the number
of emulated flows from 2 to 1.

also scope for differentiating between implementation-level and stack-level differences for

these QUIC implementations. For example, if we find that the same qualitative devia-

tion in the PE across all the evaluated CCAs for a given QUIC stack (for example, say

all the CCAs in a QUIC stack achieve lower throughput than their kernel counterparts),

it may suggest that the root cause of this non-conformance lies in how the underlying

QUIC stack is implemented, rather than in the implementation of the individual CCAs.

Transitivity. In our earlier study of 4 QUIC stacks [4], we found that the per-

formance of the CCA implementations was transitive, i.e. if a CCA X achieved higher

throughput competing with CCA Y and CCA Y achieved higher throughput competing

with CCA Z, then CCA X would achieve higher throughput when competing with CCA

Z. However, from our results of the 11 QUIC stacks evaluated in this chapter, we found

that the relative performance of QUIC implementations is not transitive between differ-

ent CCAs. For example, lsquic CUBIC beats msquic CUBIC and msquic CUBIC beats

chromium BBR, but lsquic CUBIC does not beat chromium BBR when they compete

in deep buffers. However, among the QUIC stacks that we evaluated, the intra-CCA

performance seems to be transitive. That is, transitivity is likely to exist between QUIC

5.5 Summary 123

implementations for the same congestion control algorithm. A more detailed study of

transitivity between CCAs remains as future work.

Comparing Fairly Across Different CCAs. Currently, while measuring the

conformance of a QUIC implementation, we run it alongside its corresponding TCP im-

plementation (or the reference flow). This is because our idea of conformance is built

around replaceability–that is, we want to determine how easily a QUIC implementation

can mimic a standard TCP implementation in terms of performance and behavior. How-

ever, this also means that our calculated PEs are only comparable to the PEs of other

implementations implementing the same congestion control algorithm. In the future, we

would like to define and experiment with running all QUIC implementations alongside

the same standard background flow. This would allow us to have a fair basis to compare

implementations of different congestion control algorithms.

Keeping up with the kernel. Even though the Linux kernel’s TCP stack is a

relatively stable reference for measuring the conformance of QUIC implementations,

it is still a moving target. The kernel will also continue to evolve as new RFCs are

proposed and implemented, as we have already seen with the implementation of Hystart

in §5.3. In fact, RFC8312 [9], whose implementation in quiche reduced the conformance

of its CUBIC implementation (Figure 5.16), is scheduled to be deployed only in the next

stable version of the Linux kernel. These developments make a case for conducting

regular conformance tests for QUIC implementations every time a new milestone kernel

version with significant changes to the TCP stack is released.

5.5 Summary

In summary, we present the results of a measurement study of the congestion control

algorithms in 11 popular open-source QUIC stacks. To the best of our knowledge, our

measurement study is likely the most comprehensive evaluation of congestion control

124 Containing the Cambrain Explosion in QUIC Congestion Control

algorithms in modern QUIC stacks to date. We address the limitations of previous ap-

proaches that evaluate QUIC congestion control and propose a new metric Conformance-

T for identifying implementations where there is scope for improving conformance via

parameter tuning. Our measurement study significantly advances the state of the art

in our understanding of speciation [33, 69] and raises new research questions on the

evolution of CCAs for QUIC.

5.6 Resources

Our measurement tool, along with the measurement traces for all the QUIC stacks dis-

cussed in this chapter are available on GitHub (https://github.com/NUS-SNL/QUICbench).

https://github.com/NUS-SNL/QUICbench

Chapter 6
Keeping an Eye on Congestion Control in

the Wild with Nebby

The composition of the Internet’s congestion control landscape impacts how we size

router buffers [30, 31], think about inter-flow fairness [3, 24, 25], and even decide on the

deployability of new congestion control algorithms (CCAs) on the Internet [32]. In the

past, relatively infrequent snapshots of the Internet’s composition were sufficient for us

to understand its congestion control landscape [19, 20]. However, recent developments

(as we have discussed in §4 and §5) suggest that CCAs on the Internet are evolving

faster than ever before.

The deployment of BBR and its variants is a perfect example of this rapid evolution.

While BBR was first introduced back in 2016, the algorithm has continued to evolve

over the years. At the time of writing, Google alone is known to have deployed three

different versions of BBR [26, 27, 87]. Outside of Google, operators have also been found

to deploy modified versions of BBR according to their own needs [4].

The adoption of QUIC [23] on the Internet is another catalyst that has influenced the

evolution of the Internet’s CCA landscape in recent years. While the QUIC standard

itself does not introduce any new CCAs, QUIC congestion control is implemented in

126 Keeping an Eye on Congestion Control in the Wild with Nebby

the user space and thus makes it significantly easier to implement new CCAs and to

deploy modified versions of existing CCAs. There is evidence that operators are already

deploying their own variants of CCAs like CUBIC and BBR in their QUIC stacks [5].

These variants can behave very differently from their kernel counterparts.

Given that these developments have major consequences for the Internet’s congestion

control landscape, it is crucial to keep an eye on CCAs in the wild. Unfortunately,

existing CCA identification tools [1, 19, 20, 21, 47, 48] do not work well with modern

CCAs and encrypted protocols like QUIC.

In this chapter, we revisit the problem of CCA identification from first principles and

articulate the key challenges in the context of today’s rapidly evolving CCA landscape

(§6.1.2). In particular, we argue that a CCA identification technique needs to be future-

proof to handle new and yet unknown CCAs. We also need a new metric that can work

well with modern rate-based CCAs. To address these challenges, we propose a principled

approach to CCA identification that is extensible by design (§6.2).

Our approach is implemented as a tool called Gordon that uses bytes in flight (BiF)

instead of the cwnd metric used by previous approaches [19, 20, 21, 47, 48?]. Our key

insight is that since rate-based CCAs use cwnd as a safeguard and not an operating point,

measuring the cwnd is not sufficient for telling them apart. On the other hand, while

BiF is equivalent to cwnd for loss-based CCAs, we show that it allows us to distinguish

between different rate-based CCAs. To accurately estimate the BiF at the client, we

introduce additional latency at a local bottleneck to gain visibility over a larger portion

of the pipe between the target server and the client (§6.2.1). We also found a way to

accurately estimate BiF for encrypted QUIC traffic (§6.2.2).

Our extensible classifier identifies CCAs by extracting segments based on the fre-

quency and shape of their characteristic BiF periodic oscillations during steady state.

Our approach works because existing CCAs converge to a congestion avoidance phase

in the steady state. By identifying these characteristic segments for each CCA’s BiF

127

trace, we show that a simple shape-based classifier is sufficient to identify all 12 CCAs

available in the Linux kernel v5.18, and BBRv2 [26], with an average accuracy 96.7%

(§6.3.1). Measurements are generally noisy. However, because there are many repeated

segments in a trace, we have many opportunities to successfully detect the segments that

correspond to different CCAs. To the best of our knowledge, Nebby is the first CCA

identification tool that can identify CCAs for TCP and QUIC web servers and over a

wide range of interactive applications.

We used Nebby to measure the Alexa Top 20,000 websites1 during the period between

Jun 2023 and Oct 2023 and made the following findings (§6.3):

1. While CUBIC remains the most popular CCA on the Internet, the deployment of

CCAs can differ by region for TCP. We found that while TCP BBR’s adoption is still

substantial, its deployment in regions like Mumbai and Sao Paulo lags behind Ohio

and Paris (§6.3.2).

2. Comparing our results with those of Mishra et al. [11], we found that BBR’s share

shrunk among the Alexa Top 20,000 websites since 2019. In fact, some websites have

since switched from BBRv1 to CUBIC (§6.3.2).

3. BRRv2 was publicly released by Google in 2019. Most new adopters of BBR deployed

BBRv2, instead of BBRv1. This is a positive sign, since BBRv2 is less aggressive

towards loss-based flows. However, most of the early adopters of BBR (who are still

running BBR) continue to run BBRv1, and have not yet migrated to BBRv2 (§6.3.2).

4. We detected the testing and deployment of BBRv3 in June 2023 before it was formally

announced at the IETF in August 2023. This finding was confirmed by Google and

demonstrates that Nebby is able to successfully detect the deployment of new and

undocumented variants on the Internet by major players (§6.3.2).

5. We uncovered a group of websites deploying a class of unknown variants, which we

call AkamaiCC. These CCAs are characterized by a blocky sending behavior and
1While Alexa has since been shut down, we used the last updated list [128] from February 2023 to

do our measurements.

128 Keeping an Eye on Congestion Control in the Wild with Nebby

behave unlike any other known CCAs. Popular websites using AkamaiCC include

apple.com, hulu.com, and

tiktok.com (§6.3.3).

6. We show that QUIC adoption among the Alexa Top 20k websites is still relatively

limited, with only about 8% of the websites measured responding to QUIC requests.

CUBIC and BBR seem equally popular among the deployed QUIC services (§6.3.4).

7. We successfully identified the CCAs used by popular websites to serve video and

audio traffic over interactive sessions over a Chrome browser. In addition, we found

that it was common for different CCAs to be used for different content. BBR seems

to be the CCA of choice for video streaming flows, while CUBIC is often used for

static content (§6.3.5).

6.1 Background & Motivation

Since we essentially want to recapture a snapshot of the Internet’s congestion control

landscape, it would make sense to re-apply the methodologies discussed in §3 to at

least measure the Alexa Top 20,000 websites over TCP. Therefore, when we decided to

conduct this measurement study, our first instinct was to try to re-measure websites

using Gordon.

6.1.1 Replicating Gordon

Gordon estimates a sender’s congestion window by counting the number of unacknowl-

edged packets in each RTT. To do so, Gordon makes a connection and drops packets

till it sees a retransmission. Gordon repeats this process over hundreds of connections

and then uses the resulting cwnd traces to identify the CCA. We expected the Inter-

net to have evolved since Gordon’s last measurement study in 2019, so we decided to

use Gordon to classify the Alexa Top 10,000 websites. Unfortunately, we were sorely

6.1 Background & Motivation 129

Table 6.1: Distribution of TCP variants with Gordon [11].
TCP variant Websites Proportion Mishra et al. [1]

(2019)
CUBIC [16] 212 2.12% 30.7%
BBRv1 [22] 85 0.85% 17.75%
CTCP [17]/Illinois[45] 63 0.63% 5.74%
Reno [14]/HSTCP [82] 52 0.52% 0.80%
Other CCAs 0 0% 18.87%
Unknown 1,430 14.30% 12.16%
Short flows 6,282 62.82% 7.47%
Unresponsive 1,876 18.76% 6.51%
Total 10,000 100% 100%

disappointed to discover that Gordon was only able to successfully identify 4% of our

measured websites and among these websites, only 4 categories of TCP variants were

identified. We summarize the results in Table 6.1. We also reproduce the results from

[1] (2019) in the last column of Table 6.1 for easy reference.

We see a sharp increase in unclassified and unknown websites. 62% of failures were

due to the flows being too short, despite us crawling these websites for large web pages.

This was because these websites often did not serve the requested page because they

detected Gordon’s measurements as a DoS attack. This is not surprising, since Gordon’s

methodology is extremely aggressive and can be inferred as malicious. In summary, it is

not practical to use Gordon to classify CCAs run by websites today. Moreover, Gordon

only focuses on TCP connections and can’t classify flows serving web browsers and other

real-world applications.

6.1.2 Why CCA Identification is Hard

At a high level, CCAs can be distinguished from each other based on how they react to

different network conditions. Therefore, the basic approach of identifying CCAs on the

Internet is relatively straightforward. We need to emulate different network profiles while

connecting to a web server and measure how it reacts to them using some metric. Here,

130 Keeping an Eye on Congestion Control in the Wild with Nebby

we define the network profile as some combination of bandwidth and delay constraints

enforced by the measurement tool on the connection.

However, the devil is in the details, and given the large number of CCAs that are

available and deployed on the Internet today, identifying them is not as simple. Moreover,

there are additional challenges associated with identifying CCAs on the Internet in a

future-proof way. In this section, we articulate the key challenges for CCA identification

and the requirements for further extensibility.

Establishing Causality. To accurately identify a CCA, we need to be confident

that the response seen is indeed caused by our network profile and not any other natural

variation in the network. This was less of a problem for early tools that used network pro-

files that generated responses that were unlikely to naturally occur on the Internet. For

example, TBIT [19, 20] drops all the packets after initiating a connection and CAAI [21]

delays ACKs by 1 second. Since both these behaviors rarely happen on the Internet,

the responses they elicit can be safely assumed to be caused by the measurement tool

and not the network. However, as discussed earlier, this is not effective when classifying

more sophisticated CCAs. To address this, more recent tools like Inspector Gadget [47]

and Gordon [1] create a localized bottleneck and apply more generic network profiles to

it. Since most network variations happen at the bottleneck, this limits the possibility

of natural variation on the Internet impacting the connection. Nebby also adopts this

strategy to ensure causality is maintained between the network profile and the CCA’s

response.

Handling Noisy Measurements. Cross-traffic and network bottlenecks between

the probing server and the target server will naturally introduce noise in the measure-

ments. There is a need to eliminate noisy measurements. The general approach is

to repeat measurements to eliminate outliers [1]. Gordon also attempted to do so by

repeating measurements from different vantage points [1]. Gordon also repeats a mea-

surement up to 5 times if it is not able to successfully classify it, albeit from the same

6.1 Background & Motivation 131

Table 6.2: Properties of CCA Identification tools.
Primary Design Goals Extensibility Requirements

Tool Causality Robustness Identify Cannot seem Good Works with Client
to Noise Unknown CCAs Hostile Metric Encryption Agnostic

TBIT [19, 20] ✗ ✗ ✗ ✓ ✗ ✗ ✗
CAAI [21] ✗ ✗ ✗ ✓ ✗ ✗ ✗
IG [47] ✓ ✓ ✗ ✓ ✗ ✗ ✗
Gordon [1] ✓ ✓ ✓ ✗ ✗ ✗ ✗
Nebby ✓ ✓ ✓ ✓ ✓ ✓ ✓

vantage point. This will allow us to determine if websites deploy different CCAs in dif-

ferent regions. Within each trace, we have many repeated segments, so we have many

opportunities to pick out the characteristic shape of the CCA even when there is noise.

Handling New & Unknown CCAs. Given that we expect more new and unknown

CCAs to be deployed in the wild, a modern CCA identification tool must also be able to

provide insight into the behavior of CCAs that it is not able to classify. Subsequently,

it should be able to determine that they are substantively different from known CCAs.

This is becoming increasingly important with the deployment of new and modified CCAs

in QUIC [5]. The early tools were mainly classification tools [19, 21] that attempt to

classify CCAs among a known set of CCAs and not able to detect new variants. Machine-

learning-based like Inspector Gadget [47] and the work of Chen et al. [48] fare no better.

Gordon was the first tool that conclusively detected an unknown and undocumented

variant, by showing that Akamai deployed their own CCA variant [1], which Mishra et

al. called AkamaiCC.

Probe Traffic Cannot Seem Hostile. Padhye and Floyd had clearly articulated

that a CCA identification tool must not generate traffic that would be construed to

be malicious to a web server [19]. In this light, it was surprising that Gordon [1] even

worked at all in 2019, given that it opens connections hundreds of times and drops a large

number of packets. Modern DDoS defenses have since kicked in and today they block

Gordon for many websites. Nebby adopts a mostly light-weight approach when probing

websites, and does not even introduce packet drops, unlikely previous tools[1, 19, 21].

132 Keeping an Eye on Congestion Control in the Wild with Nebby

(a) Gordon [1] (b) Inspector Gadget [47] (c) Nebby

Figure 6.1: Comparison of cwnd to BiF for BBRv1’s ProbeBw phase.

Need for a Good Metric. Any response to a given network profile must be

measured as a change in some metric, like the sending rate or the cwnd, which is defined

as the maximum number of unacknowledged packets. The sending rate of a web server

is hard to measure accurately since it will be morphed by every bottleneck it encounters

on its path to the receiver. All previous tools therefore measure how the cwnd of a

CCA changes during a connection to identify it. However, While cwnd was shown to be

sufficient for identifying window-based CCAs and BBR [1], measuring the cwnd is not

sufficient to differentiate between rate-based CCAs.

The reason why cwnd does not work well for rate-based CCAs is that cwnd is typi-

cally used by rate-based CCAs as a safeguard, and not an operating point. Given that

using the cwnd can mask a sender’s true behavior and estimating their sending rate is

not practical, Nebby elects to measure bytes in flight (BiF), which is defined as the in-

stantaneous number of unacknowledged packets, to determine a target server’s response

to a network profile (see details in §6.2.1).

In Figure 6.1, we plot the cwnd and BiF for two versions of BBR with the same

cwnd but different pacing gains (1.25 and 1.5). It is clear that cwnd measurements (from

Gordon and Inspector Gadget) do not differentiate between these two different versions

of BBR, while BiF measurements (from Nebby) allow us to tell them apart. Since all

previous CCA identification tools [1, 19, 20, 21, 47, 48] measure cwnd changes, they will

not be extensible to the current crop and future iterations of rate-based CCAs.

6.2 Methodology 133

Handling encrypted packets. The latest challenge posed to identifying CCAs

on the Internet is transport protocols like QUIC. Since all previously discussed CCA

identification tools were designed for TCP, they utilize the sequence and ACK num-

bers that are exposed unencrypted in the TCP header. However, QUIC packets are

completely encrypted and only expose the source and destination IPs and the flow id.

Therefore, previous approaches are not directly extensible to QUIC. To support non-

TCP and QUIC flows, we need to be able to measure the response to a network profile

without the need for sequence numbers and ACK numbers.

Need to be Client Agnostic. Earlier tools [1, 19, 20, 21, 47, 48] were able to

classify traffic serving only a small set of TCP-based clients (like wget and curl). Since

the choice of CCA can be expected to be influenced by the kind of application it supports,

an ideal CCA identification tool needs to support a large variety of clients. in fact, for

a modern CCA identification tool to be extensible and future-proof, there is a need for

the tool to be client-agnostic.

Summary. In Table 6.2, we summarize how existing tools and Nebby address the

various challenges and extensibility requirements. Our key contributions are twofold: we

found a more accurate metric (BiF) that works well even for rate-based TCP variants

and also added support for identifying CCA variants deployed on modern QUIC stacks

and web browsers.

6.2 Methodology

Our general approach is relatively straightforward: we start a flow from a client to the

target web server. The packets in the flow (both data and ACKs) are recorded at a local

bottleneck (that we call the capture point) along the path between the client and server

(that we will refer to as the pipe). In addition to recording the packets, the capture

point is able to change the bandwidth available to the flow, introduce additional delay,

134 Keeping an Eye on Congestion Control in the Wild with Nebby

and also drop packets.

The captured trace is then processed with a classifier (§6.2.4) to identify the CCAs.

By decoupling capturing of the trace and the classification process, we make it possible

for the accuracy of the system to be improved incrementally without having to re-do our

measurements. Our high-level approach is no different from previous approaches.

The key innovation in our work are in how we address the challenges laid out in

§6.1.2 to ensure backward compatibility and future extensibility, as follows:

1. Instead of attempting to estimate cwnd, we estimate BiF2 by introducing additional

delay at the capture point (§6.2.1);

2. We developed techniques to handle QUIC packets (§6.2.2);

3. We use a minimal set of two network profiles that we show is sufficient to identify all

12 TCP variants in Linux kernel v5.18 and BBRv2 (§6.2.3);

4. We designed an extensible classifier that can identify all existing TCP variants in

Linux kernel (§6.2.4) and show that it can be easily extended to identify new TCP

variants (§6.3.3); and

5. Our approach can also be extended to support new applications and multiple flows

(§6.2.5).

6.2.1 Estimating Bytes in Flight (BiF)

Consider a server and a client as shown in Figure 6.2. In a controlled lab setting, we

can measure the BiF of a flow by setting up the capture point near the server because

everything between the capture point and the client is visible. This is not possible for a

remote server on the Internet, since the capture point can only be set up near the client.

In such a situation, it is difficult to estimate the BiF accurately since the majority of the

packets in the pipe are not visible.

Our key insight is that if we artificially introduce additional delay between the capture
2For loss-based (AIMD) TCP variants, cwnd and BiF are equivalent.

6.2 Methodology 135

Lab setting Internet setting

additional delay

Internet setting with delay

: capture point : Data packets : ACK packets

Server Client Server Client

Server Client

Figure 6.2: Using additional delay to increase the ratio of visible in-flight packets.

point and the client, we will then have visibility over a larger portion of the pipe and

hence will be able to estimate BiF more accurately. In particular, because current

Internet latencies are small (∼20 ms [129]), by introducing a latency of x ms, we can

effectively have visibility over x
x+20 of the pipe.

To determine the additional delay required, we set up control servers running different

CCAs on AWS and measured their BiF with different amounts of delay introduced. We

then compared these measurements with the ground truth BiF values exported directly

from the sockets of these control servers. We plot the results of these experiments in

Figure 6.3 for a server running CUBIC, Reno, and BBR. From these results, we see

that the accuracy is close to 100% when the total additional delay is larger than 90 ms.

Beyond this, accuracy might even drop. We found that this trend was consistent for all

the CCAs available in the Linux kernel.

For TCP packets, we record the largest ACK and sequence numbers at the cap-

ture point and use the difference between them to estimate the BiF. We also track

re-transmissions and lost packets to correct BiF estimates accordingly.

6.2.2 Handling QUIC packets

QUIC packets are encrypted and sequence numbers are not visible. In fact, there is no

way to tell if a QUIC packet is a data packet or an ACK packet from the raw packet

136 Keeping an Eye on Congestion Control in the Wild with Nebby

Figure 6.3: Impact of the additional delay on accuracy.

trace. Even if we were able to make this distinction, it is difficult to estimate how many

bytes each ACK packet is acknowledging without access to the sequence numbers.

We address these uncertainties by making some realistic assumptions about a QUIC

connection: (i) During a connection, we assume that all QUIC packets originating from

the remote server are data packets and all the packets originating from the client are

ACK packets. Since we care only about the BiF of the CCA running at the server and

not the client, this assumption introduces no inaccuracies in our measurements. (ii) We

also assume that each ACK packet acknowledges a fixed number of bytes. We estimate

this value by dividing the total bytes transmitted by the server during the connection by

the total number of ACK packets sent by the client. This is a fair assumption because

most QUIC servers use a constant ACK frequency for the entire connection.

We exported the actual BiF logs from a quiche [104] sender running on an AWS

instance and then compared it with what Nebby was measuring from a client machine.

We ran this experiment for 20 trials in two different AWS regions. We found the accuracy

of our BiF estimates for QUIC to be higher than 97%.

6.2.3 Minimal Set of Network Profiles

To recap, a network profile is a combination of some bandwidth, delay, and buffer con-

straints applied at the capture point, together with some actions like packet drops. Each

network profile is an opportunity to differentiate between CCAs based on how they re-

6.2 Methodology 137

spond to that network profile. It is entirely possible that two different CCAs may have

the same response to a network profile. In such cases, we need to perform measurements

over additional network profiles that can help us differentiate between them. Therefore,

the goal is to find the minimum number of network profiles required to differentiate

between all the CCAs. Given that there are currently 12 available TCP variants in the

Linux kernel v5.18 (and BBRv2 in Google’s custom kernel), it was not surprising that

we were not able to find one network profile that was able to allow us to distinguish

between all of them.

However, we found that we were able to identify all 13 known CCAs with just 2 net-

work profiles and without the need to introduce arbitrary packet drops, unlike previous

approaches [11, 21]. By not introducing arbitrary packet drops, it not only simplifies the

design of the network profile, but it also makes it less likely that our connection would

be perceived as malicious by a remote sender. However, Nebby does allow natural packet

drops to happen when there is a buffer overflow at its localized bottleneck buffer.

Impact of bottleneck bandwidth. With a smaller bottleneck bandwidth, it would

take longer to download a given webpage. This means that we would see a longer

measurement trace, and provide us with more information from a single measurement.

However, we found the BiF traces to be extremely noisy at bandwidths lower than

100 Kbps. On the other hand, if the emulated bottleneck bandwidth was larger than

200 Kbps, the noise was significantly reduced.

We crawl all the target websites to find the largest available webpage. For all the

target websites, we were able to find a page that was at least 400 KB in size. This meant

that all our measurements would be at least 16 s long. In practice, all our measurements

were longer than 18 s because of slow start.

Set of 2 Network Profiles. Nebby makes all measurements with a bottleneck

bandwidth of 200 Kbps and the bottleneck buffer set at 2 BDP. Surprisingly we found

that by introducing a 50 ms one-way delay using Mahimahi [125], the network profile

138 Keeping an Eye on Congestion Control in the Wild with Nebby

(a) CUBIC (b) BIC (c) BBR

(d) Highspeed (e) Scalable (f) HTCP

(g) Reno (h) illinois (i) Westwood

(j) YeAH (k) Vegas (l) Veno

Figure 6.4: Traces of TCP congestion control algorithms in the current Linux kernel.

6.2 Methodology 139

would result in visually distinct BiF graphs for all 13 known CCAs. However, since some

CCAs can have similar shapes under this network profile (like New Reno, Illinois, and

HSTCP (see Figures 6.4g, 6.4h, and 6.4d)), we also added an additional network profile

with a larger delay (100 ms one-way delay). We plot the BiF vs time graph for all the

CCAs in the Linux kernel under both these network profiles in Figure 6.4.

6.2.4 Designing an Extensible Classifier

Our classification methodology is based on the observation that all CCAs, regardless

of their underlying philosophy, will eventually converge to a stable operating point in

the steady state. This is often called the congestion avoidance phase. This is typically

done in one of two ways: (i) they either oscillate about their target operating point

using congestion signals as periodic negative feedback (loss-based AIMD/MIMD CCAs)

or (ii) they try to predict the correct operating point by explicitly modeling the network

path (BBR and its many versions). Even if a CCA takes the later approach, the sender

will have to probe the network periodically to obtain accurate measurements to update

its network model. For BBR, these probing behaviors take form of the ProbeBW and

ProbeRTT phases.

To use this periodicity in a CCA’s behavior to classify existing TCP variants currently

available in the Linux kernel, including BBRv2[26], our classifier extracts these periodic

behaviors from BiF measurement traces and classifies them as different CCAs based on

their periodicity and shape (see Figure 6.5). For the set of known CCAs in the kernel,

we developed 2 classifiers: one for loss-based CCAs and another for BBRv1/v2. We can

easily extend Nebby to identify more CCA variants by adding new classifiers that can

be run concurrently with our 2 current classifiers. We describe how this works in §6.3.3.

Before a trace can be used for classification, we first remove the noise with a low-pass

filter ("smoothening") and segment the smoothened trace into several chunks. These seg-

ments are then sent to the different (currently 2) classifiers. This process is summarized

140 Keeping an Eye on Congestion Control in the Wild with Nebby

B
i
F

periodicity of
CUBIC's oscillations

periodicity of
BBR's oscillations

BBR's shape

CUBIC's shapeB
i
F

Figure 6.5: Characteristic features of periodic oscillations for CUBIC and BBR.

1 Smoothening

2

dy
dx

Segmentation

3
Sampling and Polynomial fitting

a1x3 + b1x2 + c1x = 0

a2x3 + b2x2 + c2x = 0

a3x3 + b3x2 + c3x = 0

4 Clustering and
Classification

(a1, b1, c1), (a2, b2, c2),
and (a3, b3, c3) fit in the

CUBIC cluster.

a

c
reno

vegas

CUBIC

b

raw measurement

Segments

5 BBR Classifier

dy
dx

Detect the frequency and
amplitude of the bandwidth

and RTT probes

L
o
ss
-b
a
se
d

C
C
A
s

BBR+
Classifiers for other CCAs

Figure 6.6: How Nebby’s Classifier works.

in Figure 6.6. We describe the various components in detail below.

1 Smoothening. The raw BiF traces captured can be noisy because of ACK

compressions and cross traffic on the Internet. To remove this noise, we remove all the

variations that happen at timescales that are shorter than an RTT (since they are likely

to be introduced by the network and not the CCA) by doing an FFT on the BiF values

and removing all component frequencies that are larger than 1
RT T .

2 Segmentation. Since most CCAs have similar slow start phases, we ignore slow

start and attempt to identify CCAs from their behavior during congestion avoidance. As

discussed earlier, CCAs typically exhibit periodicity during congestion avoidance, where

they periodically probe for more bandwidth, and then eventually back off when they

6.2 Methodology 141

encounter congestion, or if the buffer overflows. We extract these periodic waveforms

as individual segments that are punctuated by periods of ‘back-offs,’ by computing the

first derivative over the BiF trace and identifying the back-offs by their characteristic

high negative gradients. We extract the regions between these back-offs as individual

segments for a given trace. A typical trace generally gets divided into multiple segments.

Loss-based (AIMD) Classifier. Loss-based CCAs exhibit periodicity because

they back off periodically after a buffer overflow. The key approach to classification is

to fit all the input segments as polynomials and then classify based on the coefficients

of these polynomials by comparing to the coefficients of the reference implementations

in the Linux kernel.

3 Sampling and Polynomial Fitting. The input segments will generally be of

varying length. Hence, we first normalize all the BiF values for a segment between 0

and 1 and sample 200 points uniformly on the segment. We then try to fit first, second,

and third-degree polynomials to these 200 points using numpy’s polyfit function. We

do not go beyond third-degree polynomials because we found that a cubic polynomial is

sufficient to capturing the shape of the most complicated waveforms that are generated

by CCAs like CUBIC. Each of these polynomials is ranked based on the following error

score:

Error = MSE + λ ∗Degree ∗ Sum(coefficients)

Here, the MSE is the mean square error and λ is a tunable parameter that can be set

to anything between 0 and 1. We note that our error function bears a similarity to

common Lasso regression functions and penalizes polynomials with higher degrees. This

is because, in general, it is easy to over-fit higher-degree polynomials. We therefore need

to add a penalty term for these higher degree polynomials. We empirically set λ to 0.7

since it results in the clearest distinctions between different polynomials. The output of

this procedure is up to 3 coefficients a, b, and c for each segment.

142 Keeping an Eye on Congestion Control in the Wild with Nebby

4 Clustering and Classification. Once we have representative polynomials for

all the segments for a measurement trace, we compare the shapes of these segments with

those of known loss-based CCAs by comparing their coefficients (a, b, and c) to that for

the fitted polynomials. As noted earlier, each trace will often yield multiple segments.

In such cases, we classify a trace as a CCA, if (i) all or some of its component segments

match a known CCA; and (ii) none of the segments match another known CCA. In

other words, a trace will be classified as a known CCA if only some of its segments

match a known CCA while the other segments are classified as unknown. There were no

instances where the segments from a trace were matched to two different CCAs in any

of our measurements.

To generate the control data required to derive the required coefficients for the known

CCAs, we set up control servers in AWS instances in Singapore, Mumbai, Ohio, Paris,

and Sao Paulo and measured them from a host in our laboratory using Nebby. The

measurements were made using the two network profiles described in §6.2.3. Each CCA

was run 50 times from each vantage point, giving us a total of 250 measurements for

each CCA. For each CCA, we determined the representative polynomial using polyfit

as the previously described, giving us a large number of polynomials for each CCA. Since

each measurement can consist of multiple segments, we were able to derive hundreds of

polynomials for each CCA from our 250 measurements. The polynomials assigned to the

segments for the known CCAs in the Linux kernel are listed in Table 6.3. The clusters

formed by all the coefficients of these polynomials are illustrated in Figure 6.7. We can

see that with our chosen network profiles, the loss-based CCAs formed distinct clusters

that allowed us to tell the different CCAs apart.

We tested all the coefficients generated by our control tests using the D’Agostino K2

test and the Shapiro-Wilk test to verify if these coefficients were normally distributed

for all of the target CCAs. We used a soft-fail hypothesis, where if a CCA’s coefficients

passed either of the tests, they were considered to be normally distributed. All our

6.2 Methodology 143

target CCAs passed at least one of the two tests. This allowed us to model each CCA’s

coefficients as a normal distribution, and treat each CCA’s polynomial as a multivariate

random variable. Since we can model each feature’s polynomial as a multivariate ran-

dom variable, it opens up the possibility of using a large variety of supervised learning

algorithms. We chose to use Gaussian Naive Bayes (GNB) because it works with contin-

uous data and does not require mapping the data to a higher dimensional feature space

(as is the case for Support Vector Machines). We were reluctant to use such methods

as it would mean that some new feature other than the polynomial coefficients which

reflect the shape of the CCAs would be used to make the classification. As stated ear-

lier, we only want to use the shape of the CCAs to classify measurements to avoid the

risk of overfitting. GNB gives us this freedom. The prior for the GNB was set to be a

discrete distribution which allows each CCA to be chosen with equal probability. The

GNB classifier gives us a probability that a given feature can belong to a certain CCA.

In practice, we have seen probabilities for most of our features to be skewed to only

one CCA. In cases where multiple CCAs have equally high probabilities, we classify the

feature as Unknown. As discussed earlier, a measurement can have multiple features.

In such cases, a measurement is classified as a CCA only if all features in that measure-

ment belong to that CCA. A measurement can also be classified as a known CCA if only

some of the features belong to that known CCA while the other features are classified as

unknown. We found no instances where features from the same measurements matched

two different CCAs.

5 BBR Classifier. Our BBR classifier classifies a trace as either as BBRv1,

BBRv2, or Unknown. We identify the variant by scanning for BBR’s characteristic

periodic probing behavior, as follows:

• BBRv1 has a characteristic bandwidth probing behavior where it increases the sending

rate by 25% every 8 RTTs (i.e. ProbeBW). This behavior is clearly visible to Nebby

(as seen in Figure 6.1c) and easily detectable by looking for periodic spikes in the first

144 Keeping an Eye on Congestion Control in the Wild with Nebby

Figure 6.7: Coefficients for the polynomials (ax3+bx2+cx+d = 0) of all the loss-based
CCAs form distinct clusters.

derivative w.r.t. to the time of the extracted segments. BBRv1 also backs off every 10

seconds in order to estimate the minimum RTT of the path (i.e. ProbeRTT). Therefore,

if we see a rate-based sender probe for bandwidth every 8 RTTs and backing off every

10 seconds, we conclude that the sender is BBRv1.

• The probing periods for BBRv2 are less well-defined. After slow start, BBRv2 typ-

ically enters its bandwidth cruise phase where it sends at the bottleneck bandwidth

without any probing for a period that depends on the BDP. For our network settings,

this probe period is about 2 seconds. Like BBRv1, BBRv2 also backs off periodically

to measure the minimum RTT, albeit every 5 seconds. Therefore, if we see a rate-

based send that is stable during congestion avoidance for at least 2 seconds and backs

off every 5 seconds, we conclude that the CCA must be BBRv2.

Handling New & Undocumented CCAs. Given the design of our classification

framework, it can extended naturally in 3 ways: (i) existing classifiers can be modified

to use the segment corresponding to Slow Start; (ii) an additional classifier can be

constructed from observing the properties of a new CCA (an example is described in

§6.3.3); or (iii) additional network profiles can be added.

6.3 Evaluation 145

Table 6.3: Different degree clusters with their CCAs.
Linear Quadratic Cubic

BIC, YeAH, Illinois CUBIC,
Scalable, HSTCP New Reno HTCP

Vegas, Veno Westwood

6.2.5 Supporting Web Browsers & Multiple Flows using Selenium

One of Nebby’s advantages over previous tools is that it can work with a larger range

of applications. In addition to TCP measurements using wget and QUIC measurements

using a quiche client, Nebby can also classify a flow generated by a live web browser.

We used a simple Selenium[130] wrapper written in about 25 line of Python code to

launch connections and stream dynamic web content like video via a Google Chrome

browser.

This allows us to capture the same sequence of flows an application usually generates

while accessing the Internet. Since a browser can launch multiple concurrent connections,

we ran a modified version of Nebby with our Selenium client that creates a separate

bottleneck queue to isolate each connection so that each flow can be classified separately.

Our clients also generate a HAR (HTTP Archive) file after every connection to allow us

to correlate individual flows to individual asset requests.

6.3 Evaluation

In this section, we evaluate Nebby’s accuracy and present our results for measurements

over wget (TCP), quiche (QUIC), and a selenium web browser (TCP). All measurements

were done from five viewpoints (AWS datacenters) around the world, namely Ohio, Paris,

Mumbai, Singapore, and Sao Paulo. All traces, unless specified, were collected between

June 2023 and October 2023. Nebby was implemented in 100 lines of Bash and 900 lines

of Python. Nebby is open-source and available on Github [131].

146 Keeping an Eye on Congestion Control in the Wild with Nebby

Table 6.4: Classification accuracy.

Classified as

BBRv1

BBRv2

BIC CUBIC

HST
CP

HTCP
Illi

no
is

New
Reno

Sca
lab

le

Vega
s

Veno West
woo

d

YeA
H

Unk
no

wn

BBRv1 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
BBRv2 6% 94% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
BIC 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
CUBIC 0% 0% 5% 95% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
HSTCP 0% 0% 0% 0% 98% 2% 0% 0% 0% 0% 0% 0% 0% 0%
HTCP 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
Illinois 0% 0% 0% 0% 0% 0% 88% 8% 0% 4% 0% 0% 0% 0%
New Reno 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
Scalable 0% 0% 0% 0% 0% 0% 0% 8% 92% 0% 0% 0% 0% 0%
Vegas 0% 0% 0% 0% 0% 0% 0% 2% 0% 98% 0% 0% 0% 0%
Veno 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
Westwood 0% 0% 0% 0% 0% 0% 0% 8% 0% 0% 0% 92% 0% 0%
YeAH 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

6.3.1 Measurement Accuracy and Usability

To determine the accuracy of our Nebby with its 2 current classifiers, we set up controlled

web servers on the AWS cloud in 5 regions around the world: Ohio, Paris, Mumbai,

Singapore, and Sao Paulo. Each of these control servers was configured to run all the

CCAs variants available in the Linux kernel v5.18. We achieved an average accuracy of

96.7% (see details in Table 6.4). The level of accuracy is comparable to the state-of-the-

art tool Gordon [1], except that we achieve slightly better accuracy for CUBIC and BBR.

While both Gordon and Nebby use shape-based classifiers, Gordon’s measurements are

much more coarse-grained (one data point per RTT) compared to Nebby (one data point

per packet). As a result, Nebby can distinguish between all the variants in the Linux

kernel, unlike Gordon, which was not able to distinguish between some pairs of TCP

variants like Veno and Vegas. As discussed in §6.1.2, this is because BiF is a better metric

than the cwnd metric used by Gordon. In terms of usability, in 2023, Gordon was able to

identify CCAs for only 4% of Alexa Top 20k websites when measured from the Singapore

region. This is because it creates traffic patterns deemed hostile by websites (discussed

in §6.1.2). Nebby on the other hand identified ∼78% of Alexa Top 20k websites when

measured from the Singapore region (Table 6.5).

6.3 Evaluation 147

Table 6.5: Distribution of CCA variants among Alexa Top 20k websites measured from
different viewpoints by Nebby.

Variant Ohio Paris Mumbai Singapore Sao Paulo
Websites Share Websites Share Websites Share Websites Share Websites Share

BBRv1 2,594 13% 1,900 9.5% 1,670 8% 2,541 12.7% 1,280 6.4%
BBRv2 515 2.6% 373 1.9% 12 0.1% 251 1.3% 0 0%
BIC 712 3.5% 807 4% 837 4.2% 402 2% 227 1.1%
CUBIC 8,202 41% 8,406 42% 8,822 44.1% 8,673 43.4% 6,982 34.9%
HSTCP 0 0% 0 0% 0 0% 0 0% 0 0%
HTCP 583 2.9% 370 1.9% 522 2.6% 421 2.1% 363 1.8%
Illinois 721 3.6% 684 3.4% 1,121 5.6% 625 3.1% 229 1.1%
New Reno 1,840 9.2% 1,509 7.5% 3,032 15.2% 2,093 10.5% 2,683 13.5%
Vegas 878 4.4% 421 2.1% 301 1.5% 526 2.6% 511 2.5%
Veno 112 0.6% 382 1.9% 52 0.3% 21 0.1% 11 0.1%
Westwood 201 1% 170 0.9% 0 0% 0 0% 0 0%
Scalable 18 0.1% 0 0% 0 0% 6 0% 0 0%
YeAh 123 0.6% 89 0.4% 64 0.3% 0 0% 112 0.6%
Unknown 3,501 17.5% 4,889 24.4% 3,621 18.1% 4,441 22.2% 7,602 38%
Unresponsive 0 0% 0 0% 0 0% 0 0% 0 0%
Total 20,000 100% 20,000 100% 20,000 100% 20,000 100% 20,000 100%

6.3.2 Results for Alexa Top 20k Websites

To understand how the Internet’s congestion control landscape has evolved since the last

measurement study done by Mishra et al. [11] in 2019, we used Nebby to identify the

CCA variants for the Alexa Top 20,000 websites from the 5 aforementioned viewpoints

(Ohio, Paris, Mumbai, Singapore, and Sao Paulo). These measurements were made

using a wget client over TCP. We crawled all the target websites for the largest web

pages we could find to record the longest possible measurement traces. We present our

results in Table 6.5.

By comparing our results to those from the 2019 study [11], we make the following

observations:

1. Different deployments across regions. in [11], it was reported that websites

deployed the same CCAs in all 5 regions. Our measurements using Nebby suggest

that this is no longer the case. As is clear from Table 6.5, websites deploy variants like

CUBIC, BBR, and Reno differently in different regions. Overall, Nebby detected that

13.6% of the websites were deploying different variants in different regions. About

half of these websites (7% of the total) were electing to use CUBIC in Mumbai and/or

148 Keeping an Eye on Congestion Control in the Wild with Nebby

(a) Ohio (BBRv1) (b) Mumbai (CUBIC)

Figure 6.8: Traces for amazon.com in different regions.

Table 6.6: Websites (11%) found to deploy New Reno.

Previously classified by Gordon [11] as
New Reno 1%
Vegas 1%
Unknown 5%
Not measured 4%
Total 11%

Sao Paulo while running BBR in all other regions. An example of one such website

is amazon.com which was served in all regions using BBRv1 except Mumbai, where

we found it being served using CUBIC (see Figure 6.8).

2. Websites deploying New Reno. Mishra et al. had earlier in 2019 reported that

New Reno was deployed on only 0.8% of websites [1]. In contrast, Nebby found New

Reno to be deployed on some 11.1% of the 20,000 surveyed websites. On further

investigation, we found that among these 11% of websites, 5% were previously un-

classified (‘Unknown’) and 4% were not present in the earlier list of Alexa top 20,000

sites. A small number (1%) were classified by Gordon as Vegas. This is summarized

in Table 6.6.

3. Adoption of BBRv1. We found a slight dip in the absolute number of websites

that choose to deploy BBR in the Alexa Top 20,000 websites. Even in Ohio, which is

the region with the largest deployment of BBR, the number of websites using BBR

6.3 Evaluation 149

has dropped from 18% in 2019 to 15.5% in 2023. That said, it should be noted

that the Alexa list [132] has evolved significantly since the last measurement study.

Overall, we only share 52% of the same measured websites with [11]. Among these

common websites, 12% of them (6% of the total) have migrated from using BBR

in 2019 to CUBIC in 2023. A large number of these websites (9%, about 4.5% of

the total) are hosted by Cloudflare. Some of these notable websites are bbc.com

and wikihow.com. It remains true that most websites choosing to deploy BBR tend

to serve video workloads, adult content, or large files (for example, mega.nz). We

summarize the CCAs deployed by some of these ‘heavy-hitter’ websites in Table 6.7.

4. Slow adoption of BBRv2. Even though Google itself reportedly switched from

BBRv1 to BBRv2 back in 2020, the adoption of BBRv2 seems to be slow. Only

about 5% of the websites we identified as deploying BBRv2 in Ohio had upgraded

from BBRv1 back in 2019. This suggests that most websites that deploy BBRv2 today

are new adopters of BBR. Some examples of these new adopters are rakuten.com

and primevideo.com, both of which deployed CUBIC in 2019. More than 98% of the

websites that were deploying BBRv1 in 2019 and were also measured by Nebby are

either still deploying BBRv1 (86%), or have switched to CUBIC (12%).

Catching the deployment of BBRv3. During our measurements in June 2023 we

noticed that all of the google domains and youtube.com were deploying a version of

BBR that was neither BBRv1 or BBRv2 (see Figure 6.9). We hypothesized that what

Nebby had actually measured in June 2023 was an early deployment of BBRv3, which

was released to the community only in August 2023. We confirmed this finding with

Google [133].

6.3.3 Extending Nebby to identify new CCAs

In 2019, Mishra et al. reported that Akamai deployed an undocumented variant that

they referred to as AkamaiCC [1]. In 2023, we confirmed that websites hosted by Akamai

150 Keeping an Eye on Congestion Control in the Wild with Nebby

Table 6.7: CCAs deployed by most popular websites on the Internet by traffic-share.

Websites Traffic share [98] CCA
google domains 13.85% BBRv3
netflix.com 13.74% Reno
facebook.com 6.45% CUBIC
apple.com 4.59% AkamaiCC
disneyplus.com 4.49% CUBIC
amazon.com 4.24% BBRv1
tiktok.com 3.93% AkamaiCC
primevideo.com 2.67% BBRv2
hulu.com 2.44% AkamaiCC

continue to deploy an undocumented variant. Two of these sites were Apple and Hulu

and the corresponding traces are shown in Figures 6.10a and 6.10b. As shown in these

figures, the defining characteristic of this undocumented CCA is that it would typically

send data at some fixed rate for several seconds before backing off. This backoff was

not triggered by dropped packets or any bandwidth limits. The fixed send rate did not

seem to be determined by either the BDP or the RTT. This behavior is different from

what was observed by Mishra et al. where they found the cwnd to be proportional to

the BDP. It is therefore likely that AkamaiCC has evolved since the last measurement

study in 2019, or Akamai might have deployed a CCA different from the one that was

deployed in 2019.

Given these observations, we wrote a pluggable classifier for Nebby that detected if

a flow backed off in intervals between 10 to 20 s, and maintained BiF at a consistent

level between these back-offs. Since we do not have the ground truth for AkamaiCC, the

classification parameters were determined from traces obtained from 10 known Akamai-

hosted websites that Nebby originally classified as ‘Unknown’. We add this new Aka-

maiCC classifier to our original set of 2 classifiers (loss-based and BBR). By running this

new classifier over our full data set, the CCAs for all the known Akamai-hosted web-

sites (approximately 6%) were identified as AkamaiCC. This demonstrates that Nebby

is easily extensible to new CCAs beyond the known and documented CCAs. In addi-

6.3 Evaluation 151

(a) BBRv1 (b) BBRv2

(c) google.com
(Jun 2023)

(d) BBRv3
(Aug 2023)

Figure 6.9: Catching the deployment of BBRv3 in the wild in Aug 2023.

tion to these Akamai-hosted websites, we also found another 1% of websites (that were

not hosted by Akamai) that deployed an AkamaiCC-like variant. Two such examples

(TikTok and Pornhub3) are shown in Figures 6.10c and 6.10d.

6.3.4 CCA Implementations in QUIC Stacks

QUIC [23] is quickly gaining popularity on the Internet and is set to be the standard

transport with HTTP3. Meta already supports 75% of its traffic using its mvfst QUIC

stack [134]. Mishra et al. had earlier shown that the implementations of standard TCP

variants in existing QUIC stacks can be quite different from that of the kernel [33]. In

Table 6.9, we list the open-sourced stacks that we investigated and the available CCAs

for them. Since QUIC implementations can behave significantly differently from their
3No pornographic material was watched in the course of this research. All data access was done with

a headless browser.

152 Keeping an Eye on Congestion Control in the Wild with Nebby

(a) apple.com (b) hulu.com

(c) tiktok.com (d) pornhub.com

Figure 6.10: Traces for websites deploying AkamaiCC.

kernel counterparts, we re-evaluated the accuracy of our classifier for all the QUIC stacks

listed in Table 6.9.

In Fig. 6.11, we show some representative QUIC network profiles that we have found

to be quite different from standard kernel implementations. Comparing to the network

profiles for kernel implementation shown in Fig. 6.4, we can see that the profiles are

mostly similar, except for chromium CUBIC, quiche CUBIC and mvfst BBR. We note

that chromium CUBIC and mvfst BBR were identified by Mishra et al. to be non-

conformant QUIC CCA implementations [33].

In Table 6.10, we produce the confusion matrix for the classification of some CCA

implementations in these QUIC stacks. In general, our classifier works very well for

most of the CCA implementations in the investigated QUIC stacks. Our classifier has

an average accuracy of 92.8%. Our accuracy is not as high for quiche CUBIC (78%),

xquic Reno (80%), and mvfst BBR (86%), but this is hardly surprising since these

variants were earlier identified by Mishra et al. to be non-conformant QUIC CCA imple-

6.3 Evaluation 153

Table 6.8: Distribution of QUIC CCA variants as measured from different viewpoints
on the Internet.

Variant Ohio Paris Mumbai Singapore Sao Paulo
Websites Share Websites Share Websites Share Websites Share Websites Share

CUBIC 622 3.1% 829 4.1% 927 4.6% 796 4% 403 2%
BBR 1,036 5.2% 703 3.5% 197 1% 268 1.3% 479 2.4%
BBRv2 0 0% 0 0% 0 0% 0 0% 0 0%
New Reno 25 0.1% 10 0% 11 0% 18 0.1% 10 0%
Unknown 101 0.5% 242 1.2% 847 4.2% 702 3.5% 892 4.5%
Unresponsive 18,216 91.1% 18,216 91.1% 18,216 91.1% 18,216 91.1% 18,216 91.1%
Total 20,000 100% 20,000 100% 20,000 100% 20,000 100% 20,000 100%

Table 6.9: List of open-source QUIC/TCP stacks studied.

Organization Stack CUBIC BBR Reno

Alibaba xquic [110] ✓ ✓ ✓

Amazon Web Services s2n-quic [109] ✓ ✗ ✗

Cloudflare quiche [104] ✓ ✗ ✓

Go quicgo [106] ✓ ✗ ✓

Google chromium [102] ✓ ✓ ✗

H2O quicly [107] ✓ ✗ ✓

LiteSpeed lsquic [105] ✓ ✓ ✗

Meta mvfst [101] ✓ ✓ ✓

Microsoft msquic [103] ✓ ✗ ✗

Mozilla neqo [111] ✓ ✗ ✓

Rust quinn [108] ✓ ✗ ✓

mentations [33]. By non-conformant, we mean that their behavior deviates significantly

from their respective kernel CCA implementations. We added the Conformance [33] for

all the benchmarked QUIC CCA implementations as an extra column in Table 6.10.

To investigate the CCAs deployed by websites that support QUIC, we repeated mea-

surements of the Alexa Top 20,000 website by sending requests using quiche’s QUIC

client using Nebby. We found that only 8.9% of the 20,000 sites responded to QUIC

requests. Most of these websites supporting QUIC were hosted by Cloudflare or were

Facebook domains. All these websites also deployed the same congestion control algo-

rithms they deployed over TCP. Our results are summarized in Table 6.8. We found no

evidence of undocumented variants being deployed on QUIC stacks. It seems likely that

most of the websites that were classified as ‘Unknown,’ could not be classified because

154 Keeping an Eye on Congestion Control in the Wild with Nebby

Table 6.10: Confusion Matrix for QUIC CCA variants.
Classified as

Organization Variant BBRv1

BBRv2

BIC CUBIC

HST
CP

HTCP
Illi

no
is

New
Reno

Sca
lab

le

Vega
s

Veno West
woo

d

YeA
H

Unk
no

wn

Con
for

man
ce[

33]

Alibaba xquic CUBIC 0% 0% 0% 88% 0% 0% 0% 0% 0% 0% 0% 0% 0% 12% 0.55
AWS s2n-quic CUBIC 0% 0% 3% 92% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 0.76
Cloudflare quiche CUBIC 0% 0% 12% 78% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 0.08
Go quicgo CUBIC 0% 0% 12% 84% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 0.87
Google chromium CUBIC 0% 0% 6% 94% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.6
H2O quicly CUBIC 0% 0% 0% 82% 0% 0% 0% 0% 0% 0% 0% 0% 0% 18% 0.68
LiteSpeed lsquic CUBIC 0% 0% 4% 92% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 0.95
Meta mvfst CUBIC 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.9
Microsoft msquic CUBIC 0% 0% 0% 98% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0.7
Mozilla neqo CUBIC 0% 0% 7% 88% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 0
Rust quinn CUBIC 0% 0% 0% 90% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 0.7
Alibaba xquic BBR 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.15
Google chromium BBR 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.7
LiteSpeed lsquic BBR 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.59
Meta mvfst BBR 86% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 14% 0
Alibaba xquic Reno 0% 0% 0% 0% 0% 0% 0% 80% 0% 0% 0% 0% 0% 20% 0.38
Cloudflare quiche Reno 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0.8
Go quicgo Reno 0% 0% 0% 0% 0% 0% 0% 98% 0% 0% 0% 0% 0% 2% 0.92
H2O quicly Reno 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0.8
Meta mvfst Reno 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0.94
Mozilla neqo Reno 0% 0% 0% 0% 0% 0% 0% 92% 0% 0% 0% 0% 0% 8% 0.62
Rust quinn Reno 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0.96

of noisy measurements.

6.3.5 Video Measurements with Selenium

In addition to measuring websites over wget and QUIC, we also measured websites

using a standard web browser as described in §6.2.5. One of Nebby’s strengths over its

predecessors is that it allows us to study streaming and interactive applications. We

measured popular websites while streaming video on demand (VOD), live video, audio,

and while being on a video call. Since such applications tend to open multiple concurrent

connections, we use a modified version of Nebby that assigns separate bottleneck queues

to each flow. Our results are summarized in in Table 6.11. Overall, we noticed the

following key trends.

BBR is the preferred CCA for video traffic. To investigate if certain CCAs were

preferred for certain asset types, we identified which flows were serving which elements in

the webpage and correlated their CCAs with them. We found that most audio and video

streaming websites like Primevideo, AppleTV, Spotify, Apple Music, YouTube, Douyin,

6.3 Evaluation 155

(a) quiche CUBIC (b) mvfst BBR (c) xquic New Reno

Figure 6.11: Traces of non-conformant CCAs implemented in popular QUIC stacks.

Table 6.11: CCAs serving popular web services running on a Selenium client.

Website Region Activity Connections Max Concurrent CCAs for CCAs for
of popularity Connections Audio/Video Traffic Static Assets

Netflix Global VOD 28 5 New Reno* [135] New Reno, CUBIC
Primevideo Global VOD 12 6 BBR BBR
AppleTV Global VOD 16 6 BBR BBR, CUBIC
Disney+ Global VOD 20 6 CUBIC CUBIC
HBO Global VOD 10 4 BBR CUBIC
Tiktok Global VOD 21 4 AkamaiCC AkamaiCC, CUBIC
YouTube Global VOD, live video 81 6 BBRv3* [133] BBR* [133]
Twitch Global VOD, live video 118 6 BBR CUBIC
Spotify Global VOD, streaming audio 8 5 BBR* [136] BBR* [136]
Apple Music Global streaming audio 16 6 BBR BBR, AkamaiCC
Zoom Global video call 39 6 BBR CUBIC
Meet Global video call 60 5 BBRv3* [133] BBR* [133]
Hulu US VOD 41 6 AkamaiCC AkamaiCC
Douyin China VOD 5 6 BBR BBR
Bilibili China VOD 10 3 BBR BBR
Hotstar India VOD 12 5 BBR BBR
Jiocinema India VOD 12 6 CUBIC CUBIC

* Verified through personal correspondence or public tech blog posts.

Bilibili, Twitch, HBO, and Hotstar used some version of BBR to stream audio and video.

However, there were a few exceptions to this rule, namely Netflix (New Reno), TikTok

and Hulu (AkamaiCC), and Disney+ and Jiocinema (CUBIC).

A website can use different CCAs for different flows. We also found instances

where websites were using different CCAs to deliver different assets. For example, we

observed AppleTV, Twitch, and HBO use BBR to stream video and CUBIC to load

static assets like banner ads. It is likely this variation exists because different CDNs

cache these assets. Simple websites with only static web content always had all their

data delivered by only one CCA.

156 Keeping an Eye on Congestion Control in the Wild with Nebby

Inter-flow interaction for the same websites. It is well known that CUBIC

and BBR flows do not mix well [3, 25]. Therefore, when we saw some websites using a

combination of CUBIC and BBR flows to deliver their web pages, we were curious to see

how these flows would interact with each other. Therefore, for these webpages alone, we

ran Nebby in its default single bottleneck setting to see how these flows would interact.

Interestingly, for AppleTV, we found CUBIC and BBR flows interacting and negatively

impacting each other’s performance. We often observed that a CUBIC flow delivering a

banner ad on appletv.com could cause degradation to the long-running BBR flow that

was delivering video chunks for the video player. While this exact interaction might

be an artifact of Nebby’s constraint bandwidth setting, this is enough evidence that

developers need to be careful about how they deploy CCAs to avoid causing performance

issues inadvertently.

6.4 Discussion

Our measurement results have raised many questions on the future of the Internet’s

congestion control landscape. Our methodology also has scope for improvement on

many fronts. In this section, we discuss these questions and future work.

Internet Evolution. The original motivation for this study was the question: how

has the congestion control environment of the Internet changed? Given the rapid adop-

tion of BBR in 3 years since it was introduced in 2016, the burning question in 2019

was whether BBR would eventually replace CUBIC as the dominant congestion control

on the Internet. In 2022, Mishra et al. modeled the interactions between CUBIC and

BBR and hypothesized that the adoption of BBR would likely slow down because as the

proportion of flows switch over to BBR, the advantage of doing so will start to drop [3].

Beyond a critical mass, CUBIC will end up outperforming BBR when it is in the mi-

nority. Our latest study suggests that Mishra et al. might be on to something since the

6.4 Discussion 157

proportion of BBR sites has hardly changed since 2019, despite rapid initial adoption.

Different Strokes for Different Applications, Different Localities. One of

the surprising findings of our latest measurement study is that the preferences for CCAs

is not uniform, i.e. providers do not seem to have a preference of one CCA over the

rest. In fact, we have found instances where a provider can deploy different CCAs under

different contexts. For example, Apple deploys BBR for videos and CUBIC for ads in

the same(!) session (see §6.3.5).

Classifying CCAs beyond those in the Linux kernel. As discussed, Nebby can

be extended to more CCAs as they are deployed on the Internet. For example, Meta

implements Copa [93] in their QUIC stack. As an extension to Nebby’s classifier, we

wrote a simple Copa classifier. This classifier identified Copa based on its periodic oscil-

lations around the bottleneck bandwidth that occur every five RTTs (see Figure 6.12).

Our classifier was able to successfully classify both the original UDP implementation of

Copa [93] as well as mvfst’s implementation [101] with an accuracy of 88%. Interest-

ingly, mvfst Copa’s oscillations were less visible at higher RTTs, even though in theory

Gordon should be able to view a larger portion of Copa’s BiF. When we ran this classifier

for our Alexa Top 20k traces, none of the existing websites were identified to be running

Copa, including Facebook domains. This is not surprising, since Copa is reported to be

deployed by Meta only at the uplink [137].

We also wrote a classifier for PCC Vivace [37], which proved to be more challenging.

Vivace is an online optimization algorithm that periodically probes above and below the

receive rate to see if it can improve its utility. These probes are relatively small, but we

can see in the 100 ms delay profile shown in Figure 6.12d that Gordon is able to observe

the resulting oscillations. However, our classifier could only identify these steps in the

BiF only about half the time, perhaps because the variations in the BiF are relatively

small. As a result, our PCC Vivace classifier’s accuracy suffered and was about 58%.

We believe that with further study, it is certainly possible to develop a more accurate

158 Keeping an Eye on Congestion Control in the Wild with Nebby

(a) Copa [93] (b) mvfst Copa [101]

(c) PCC Vivace [37] (d) Zoomed in view for a PCC trace.

Figure 6.12: BiF traces for Copa and PCC Vivace.

classifier for PCC Vivace and we leave this as future work.

QUIC CCA variants. It has been shown that while QUIC stacks implement stan-

dard CCA variants, many of these variants behave somewhat differently from standard

kernel implementations [33]. The results of our current study seem to suggest that these

non-conformant variants can be classified successfully even though they do not behave

exactly like standard kernel implementations. This trend might not continue to hold in

the future and the characterization of the current congestion control landscape will be

increasingly complex.

In this measurement study, we have focused solely on identifying the congestion

control variant used and we used our classifier that was trained on the kernel implemen-

tations. It is plausible for us to improve the accuracy of our classifier by using the traces

6.5 Summary 159

from the QUIC implementations as well and for us to do a more detailed measurement

study to identify not only the CCA but the actual QUIC stack for existing QUIC servers

on the Internet. This remains as future work.

6.5 Summary

In the early 2000s, measurement studies on the distribution of congestion control al-

gorithms were generally conducted roughly every 10 years. This was fine because the

evolution of congestion control algorithms was relatively slow. Today, we are in an era

of rapid change where new CCAs are developed every year. With Gordon, researchers

finally have a reliable and extensible way to keep abreast of the evolution of the Internet

congestion control landscape.

6.6 Resources

Our measurement tool Nebby, along with the BiF traces for the Alexa Top 20,000 web-
sites will be made available on GitHub (https://github.com/NUS-SNL/Nebby).

https://github.com/NUS-SNL/Nebby

Chapter 7
Conclusion

In this thesis, we present a 5-year view of the Internet’s congestion control landscape

through measurement and mathematical modeling. We took two snapshots of the mix

of congestion control algorithms on the Internet through Internet-scale measurement

studies conducted in 2019 (see §3) and late 2023 (see §6).

Inspired by BBR’s rapid adoption on the Internet, we also proposed a mathematical

model and presented a game-theoretic analysis of competing CUBIC and BBR flows (see

§4). Based on these results, we made a bold prediction that BBR’s performance gains

over CUBIC, and therefore its rate of adoption on the Internet, is likely to slow down

as the proportion of BBR flows increases on the Internet.

We also showed that speciation in QUIC congestion control risks further increasing

the heterogeneity in Internet congestion control if left unchecked (see §5). Our tool

QUICbench is able to detect QUIC CCA implementations that are not conformant to

their reference kernel implementations and even suggest fixes.

162 Conclusion

Table 7.1: Evolution of the Internet’s Congestion Control Landscape (2001–present).
Class CCA 2001 [19] 2004 [138] 2011 [21] 2019, Gordon [1] 2023, Nebby [6]

Loss-based AIMD
New Reno [14] 35% (1,571) 25% (21,266)

12.5% (623)
0.8% (160) 11.1% (11,157)

Reno [7] 21% (945) 5% (4,115) - -
Tahoe 26% (1,211) 3% (2,164) - -

Loss-based MIMD

CUBIC [16]

- -

22.3% (1,115) 30.7% (6,139) 41% (41,085)
BIC [15] 10.6% (531) 0.9% (181) 3% (2,985)
HSTCP [82] 7.4% (369) R 0% (0)
Scalable [76] 1.4% (69) 0.2% (39) 0% (24)

Delay-based AIMD Vegas [43] - - 1.2% (58) 2.8% (564) 2.6% (2,637)
Westwood [77] 2% (104) 0% (0) 0.4% (371)

Delay-based MIMD

CTCP [17]

- -

6.7% (334) 5.7% (1,148)
C

Illinois [139] 0.6% (28) 3.4% (3,380)
Veno [44] 0.9% (45) V 0.6% (578)
YeAH [42] 1.4% (72) 5.8% (1,162) 0.4% (388)
HTCP [75] 0.4% (18) 2.8% (560) 2.3% (2,259)

Rate-based

BBRv1 [78]

- - -

17.8% (3,550) 10% (9,985)
BBR G1.1 [1] 0.8% (167) -
BBRv2 [26] - 1.1% (1,151)
BBRv3 - 0.2% (204)

Unclassified 17.3% (792) 53% (44,950) 4% (198) 12.2% (2,432) 16.7% (16,733)
AkamaiCC - - - 5.5% (1,103) 7.2% (7,117)
Short Flows - - 26% (1,300) 7.5% (1,493) -
Unresponsive 0.7% (30) 14% (11,529) - 6.5% (1,302) -
Abnormal SS* - - 2.9% (144) - -
Total hosts 100% (4,550) 100% (84,394) 100% (5,000) 100% (10,000) 100% (100,000)

R Classified together with New Reno
V Classified together with Vegas
C CTCP has been deprecated in Windows
* Websites identified by CAAI as having Abnormal Slow Starts

7.1 Summary of Internet CCA Evolution (2001–present)

One of the key contributions of this thesis is revealing the massive increase in CCA

heterogeneity today compared to the pre-BBR Internet. We summarize the results

from Chapters 3 and 6 and tabulate them along with the results from previous similar

measurement studies in Table 7.1. We note that since Nebby uncovered different CCA

deployment rates in different regions, we have added the results from all the regions to

make the proportions more comparable to previous studies which are not region-specific.

When viewed in context, a number of trends become clear:

1. First, BBR, along with its variants, is currently a significant player on the Internet.

While BBR’s adoption has seen a dip in terms of pure website count, most major

players who were early adopters of BBRv1 have decided to stick with deploying

BBR and its variants. Between our 2019 and 2023 measurement studies, we have

7.2 The cause and effect of CCA heterogeneity 163

also seen the set of rate-based CCAs expand.

2. On the other hand, recent trends indicate diversity amongst the set of AIMD/MIMD

CCAs on the Internet is reducing, with most websites still using an AIMD/MIMD

CCA choosing to deploy either CUBIC or New Reno.

3. Finally, undocumented variants like AkamaiCC are also slowly gaining traction.

While AkamaiCC was limited to Akamai-hosted websites in 2019, this is no longer

true today. This indicates that there is a need to keep an eye on these undocu-

mented variants on the Internet and track their adoption.

Overall, while infrequent snapshots of the Internet’s congestion control landscape were

sufficient in the past, we argue that there is a need to review the mix of CCAs deployed

by popular websites on the Internet more frequently today. We expect future-proof and

extensible CCA classification tools like Nebby to lead the way on this front.

7.2 The cause and effect of CCA heterogeneity

While the rapid increase in heterogeneity in the Internet’s congestion control landscape

that we have observed might seem alarming at first, it is important to remember that

this heterogeneity has not been created in a vacuum. Over the years, CCA design

has been inspired by the evolving demands of nascent web applications. For example,

historically when the Internet was not very well provisioned, throughput was the main

driver for performance. Classic AIMD/MIMD algorithms like CUBIC and New Reno fit

this paradigm well, especially in the presence of deep enough buffers. As bandwidths

increased, webpage responsiveness started being driven by latency, inspiring efforts for

reducing end-to-end latency using early delay-based CCAs like Vegas. There was a need

for low latency and consistently high throughput as video traffic share increased on the

Internet. BBR was first introduced to meet these demands. It is therefore no surprise

164 Conclusion

that when Google first deployed BBR in 2016, one of the first services they tested it on

was YouTube. As discussed in §6, BBR remains a popular choice for websites delivering

video content. On the other hand, CUBIC remains popular for delivering static assets

like banner ads on most websites.

The lesson here is simple. Since the makeup of the Internet’s congestion control

landscape is application-driven, so should our ideas of stability, fairness, deployability,

and provisioning.

An Evolving definition of Fairness on the Internet. Traditionally, fairness

on the Internet has been thought of in terms of bandwidth fairness. In the early days

of the Internet, this was true, since throughput was the main driver for performance

for all flows. However, as the Internet, the applications that run on it, and the CCAs

that support these applications all mature, our idea of fairness needs to evolve as well.

Since the network supports different flows that have different performance requirements,

fairness between them should not be judged based on just throughput. In the past,

there have been proposals for utility models [140] that allow flows that have different

utility functions to be compared to one another. BBRv1 was often critiqued for being

‘irresponsible’ for not being bandwidth fair to traditional CCAs like CUBIC [25]. These

ideas of deployability must evolve as well [32].

Taming the Zoo. Given that the majority of Nash Equilibrium distributions that

we have found are mixed distributions of CUBIC and BBR, it is likely that these two

algorithms will have to co-exist on the Internet for the foreseeable future. We therefore

need to work on networking solutions that work well with not just one class of congestion

control algorithms, but a diverse mix of both of them and probably other variants. In

this aspect, solving how well traffic from different classes of applications and the CCAs

they chose to deploy can coexist is the next big question in Internet congestion control.

The main challenge in allowing these congestion control algorithms to coexist lies in

finding a way to allow them to achieve their different performance goals while sharing

7.2 The cause and effect of CCA heterogeneity 165

the same bottleneck. For example, when a delay-sensitive and a throughput-sensitive

flow both share a bottleneck with a FIFO queue, it is impossible for the delay-sensitive

flow to reduce queuing delay in the presence of the competing throughput-sensitive flow

that will keep the bottleneck buffer filled. Queuing disciplines for modern Internet traffic

need to be cognizant of this challenge and provide ways to isolate different classes of flows

that value different network metrics.

Incentives to switch to better congestion control. BBR’s deployment trajec-

tory from first being introduced in 2016 to now in 2023 also raises an important question

on the incentives to switch to objectively better CCAs on the Internet. For example, it

is well-known that when a bottleneck has only BBR flows, they are able to keep queue

occupancy low while ensuring utilization. One can therefore argue that BBR is a better

congestion control algorithm for the Internet than CUBIC, which tends to fill bottleneck

buffers and keeps the queuing delay high.

In the past, transitions to such modern and better congestion control algorithms have

been possible on the basis of performance incentives alone. For example, CUBIC could

consistently outperform New Reno in terms of throughput, and therefore quickly became

a dominant force on the Internet’s congestion control landscape [21]. Not only can BBR

not enjoy the same guarantee of superior performance (see §4), but it is also subject to

a lot more stringent deployability checks. One can imagine that if CUBIC was proposed

today in an all-Reno Internet, it would also be considered unfair and too aggressive.

In this sense, we must balance the need for a fair Internet against the need for a

better and more performant Internet. Our threshold for deployability must be reviewed

more carefully so that it allows innovation and improvement in the CCA design space

while also ensuring that we do not inflict too much harm on flows that choose to stick

to legacy congestion control algorithms.

166 Conclusion

7.3 Future Work

We expect the work in this thesis to inspire future research in Internet congestion control.

We briefly discuss some possible research questions below.

Re-answering questions on buffer sizing We need to review how we size buffers

on the Internet in two respects. The first is understanding how current buffer sizing

rules of thumbs [40] are fair in the face of a realistic heterogeneous mix of CCAs and

not just loss-based CCAs. The second is viewing sizing buffers as a way to bounding

unfairness between traditional loss-based CCAs and modern rate-based CCAs like BBR.

Traditionally, the function of the buffer has only been to ensure utilization. While

modeling buffers for the modern Internet, we not only have to consider link utilization

but also what impact those buffer sizes have on the fairness between different competing

CCAs.

In-network support for congestion control algorithms. The zoo that the

Internet has become today is also an indication that we are perhaps are at the end of

the road of what we can achieve with end-point-only congestion control algorithms. In

the future, in order to keep the Internet running smoothly and simultaneously support

the demands of different classes of applications, we will need in-network support in

Internet congestion control.

Continuous and longitudinal measurement studies. All signs point to hetero-

geneity on the Internet continuing to increase in the future, especially with the continued

revisions to BBR and its family of variants, as well as the adoption of QUIC. In this

aspect, we strongly feel the need to keep an eye on the Internet’s congestion control

landscape and conduct more frequent measurement studies.

Dealing with bad actors. Our experience with QUIC also leaves us with no doubt

that it will encourage people to continue to test and deploy new and modified CCAs on

the Internet. Aside from the results presented in this thesis, many developers working

7.3 Future Work 167

on proxy tools are using QUIC as a way to implement extremely aggressive congestion

control algorithms as a way to bypass circumvention measures. Brutal [141], for example,

is a CCA implemented in Hysteria’s QUIC stack that speeds up its sending rate when

it sees packet loss! mKCP [142], implemented along with the v2ray reverse-proxy also

gives the sender an option to turn off congestion control and send data at a fixed high

rate. As the population of such bad actors increases on the Internet, researchers will

have to come up with creative ways to limit the damage such aggressive CCAs can do

to other flows on the Internet.

Bibliography

[1] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben
Leong. The Great Internet TCP Congestion Control Census. In Proceedings of
SIGMETRICS, 2019.

[2] Ayush Mishra, Jingzhi Zhang, Melodies Sims, Sean Ng, Raj Joshi, and Ben Leong.
Conjecture: Existence of nash equilibria in modern internet congestion control. In
Proceedings of APNet, 2021.

[3] Ayush Mishra, Wee Han Tiu, and Ben Leong. Are we heading towards a BBR-
dominant internet? In Proceedings of IMC, 2022.

[4] Ayush Mishra, Sherman Lim, and Ben Leong. Understanding speciation in QUIC
congestion control. In Proceedings of IMC, 2022.

[5] Ayush Mishra and Ben Leong. Containing the cambrian explosion in QUIC con-
gestion control. In Proceedings of IMC, 2023.

[6] Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an eye on
congestion control in the wild with nebby. In Proceedings of SIGCOMM, 2024.

[7] Van Jacobson. Congestion avoidance and control. SIGCOMM CCR, 18(4):314–
329, 1988.

[8] Leonard Kleinrock. Power and deterministic rules of thumb for probabilistic prob-
lems in computer communications. In ICC 1979; International Conference on
Communications, Volume 3, 1979.

[9] L. Xu, s. Ha, Vidhi Goel, and Lars Eggert. Spurious Congestion Events, 2023.
https://tools.ietf.org/id/draft-ietf-tcpm-rfc8312bis-00.html.

[10] Canada Sandvine Inc. Waterloo, ON. The 2018 global internet phenomena report,
2018. https://www.sandvine.com/phenomena.

[11] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi,

170 BIBLIOGRAPHY

and Ben Leong. Gordon: Congestion control identification tool, 2019.
https://github.com/NUS-SNL/Gordon.

[12] Internet World Stats. Internet usage statistics, 2023.
https://www.internetworldstats.com/stats.htm.

[13] I Stoica. A comparative analysis of TCP tahoe, reno, new-reno, sack and vegas.
Communication Networks, Student Project, 2005.

[14] Vern Paxson and Mark Allman. TCP Congestion Control. RFC 5681, 2009.

[15] Lisong Xu, K. Harfoush, and Injong Rhee. Binary increase congestion control
(BIC) for fast long-distance networks. In Proceedings of INFOCOM, 2004.

[16] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-friendly High-
speed TCP Variant. SIGOPS Operating Systems Review, 42(5):64–74, 2008.

[17] Kun Tan, Jingmin Song, Qian Zhang, and Murad Sridharan. A compound TCP
approach for high-speed and long distance networks. In Proceedings of INFOCOM,
2006.

[18] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks. Computer Networks and ISDN
systems, 17(1):1–14, 1989.

[19] Jitendra Padhye and Sally Floyd. On inferring TCP behavior. In Proceedings of
SIGCOMM, 2001.

[20] Alberto Medina, Mark Allman, and Sally Floyd. Measuring the evolution of trans-
port protocols in the internet. SIGCOMM CCR, 35(2):37–52, 2005.

[21] Peng Yang, Juan Shao, Wen Luo, Lisong Xu, Jitendra Deogun, and Ying Lu.
Tcp congestion avoidance algorithm identification. IEEE/ACM Transactions on
Networking, 22(4):1311–1324, 2011.

[22] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: Congestion-based Congestion Control. CACM, 60(2):58–66,
2017.

[23] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure
Transport, RFC 9000, 2021. https://datatracker.ietf.org/doc/html/rfc9000.

[24] Mario Hock, Roland Bless, and Martina Zitterbart. Experimental evaluation of
BBR congestion control. In Proceedings of ICNP, 2017.

[25] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry.
Modeling BBR’s interactions with loss-based congestion control. In Proceedings of
IMC, 2019.

BIBLIOGRAPHY 171

[26] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian Swett, Victor
Vasiliev, Priyaranjan Jha, Yousuk Seung, Matt Mathis, and Van Jacobson.
BBR v2 - A Model-based Congestion Control. ICCRG at IETF 104, 2019.
https://bit.ly/2HgGOuQ.

[27] BBRv3: Algorithm Bug Fixes and Public Internet Deployment, 2023.
http://tinyurl.com/bbrv3ietf.

[28] Active QUIC implementations, 2021. https://github.com/quicwg/base-
drafts/wiki/Implementations.

[29] Ed. M. Bishop. RFC 9114 HTTP/3, 2022. https://www.rfc-
editor.org/rfc/rfc9114.html.

[30] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router buffers.
ACM SIGCOMM CCR, 34(4), 2004.

[31] Bruce Spang, Serhat Arslan, and Nick McKeown. Updating the theory of buffer
sizing. In Proceedings of SIGMETRICS, 2022.

[32] Ranysha Ware, Matthew K Mukerjee, Srinivasan Seshan, and Justine Sherry. Be-
yond jain’s fairness index: Setting the bar for the deployment of congestion control
algorithms. In Proceedings of Hotnets, pages 17–24, 2019.

[33] Ayush Mishra and Sherman Lim. QUICBench, 2022. https://github.com/NUS-
SNL/QUICbench.

[34] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: Congestion-based Congestion Control. CACM, 60(2):58–66,
2017.

[35] Alexey Ivanov. Evaluating bbrv2 on the dropbox edge network, 2019.
https://tinyurl.com/yyrs68pp.

[36] Erik Carlsson and Eirini Kakogianni. Smoother streaming with bbr, 2018.
https://tinyurl.com/yyt5tbhd.

[37] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. PCC Vivace: Online-Learning Congestion Control. In
Proceedings of NSDI, 2018.

[38] Ed. M. Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3), 2021.
https://tools.ietf.org/html/draft-ietf-quic-http-34.

[39] Jitendra Pahdye and Sally Floyd. On inferring TCP behavior. In Proceedings of
SIGCOMM, 2001.

[40] Nick McKeown, Guido Appenzeller, and Isaac Keslassy. Sizing router buffers
(redux). SIGCOMM CCR, 49(5):69–74, 2019.

172 BIBLIOGRAPHY

[41] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks. Computer Networks and ISDN
Systems, 17(1):1–14, 1989.

[42] Andrea Baiocchi, Angelo P Castellani, and Francesco Vacirca. Yeah-tcp: yet
another highspeed tcp. In Proceedings of PFLDnet, 2007.

[43] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. In Proceedings of SIGCOMM,
1994.

[44] Cheng Peng Fu and S. C. Liew. TCP Veno: TCP Enhancement for Transmission
over Wireless Access Networks. IEEE JSAC, 21(2):216–228, 2006.

[45] Shao Liu, Tamer Başar, and R. Srikant. Tcp-illinois: A loss and delay-based
congestion control algorithm for high-speed networks. In Proceedings of VALUE-
TOOLS, 2006.

[46] Peng Yang and Lisong Xu. A survey of deployment information of delay-based TCP
congestion avoidance algorithm for transmitting multimedia data. In Proceedings
of GLOBECOM Workshops, 2011.

[47] Sishuai Gong, Usama Naseer, and Theophilus A Benson. Inspector gadget: A
framework for inferring TCP congestion control algorithms and protocol configu-
rations. In Network Traffic Measurement and Analysis Conference, 2020.

[48] Xiaoyu Chen, Shugong Xu, Xudong Chen, Shan Cao, Shunqing Zhang, and Yanzan
Sun. Passive TCP Identification for Wired and Wireless Networks: A Long-Short
Term Memory Approach. arXiv preprint:1904.04430, 2019.

[49] Desta H. Hagos, Paal E. Engelstad, Anis Yazidi, and Øivind Kure. General TCP
state inference model from passive measurements using machine learning tech-
niques. IEEE Access, 6:28372–28387, 2018.

[50] Douglas E. Comer and John C. Lin. Probing TCP implementations. In Proceedings
of USTC, 1994.

[51] W. Sun, L. Xu, and S. Elbaum. Scalably testing congestion control algorithms of
real-world TCP implementations. In Proceedings of ICC, 2018.

[52] Ralf Lübben and Markus Fidler. On characteristic features of the application level
delay distribution of TCP congestion avoidance. In Proceedings of ICC, 2016.

[53] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and G. Carle. Towards
a deeper understanding of TCP BBR congestion control. In Proceedings of IFIP
Networking, 2018.

[54] Belma Turkovic, Fernando A. Kuipers, and Steve Uhlig. Fifty shades of con-

BIBLIOGRAPHY 173

gestion control: A performance and interactions evaluation. arXiv preprint
arXiv:1903.03852, 2019.

[55] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten God-
frey, and Michael Schapira. PCC vivace: Online-learning congestion control. In
Proceedings of NSDI, 2018.

[56] Simon Scherrer, Markus Legner, Adrian Perrig, and Stefan Schmid. Model-based
insights on the performance, fairness, and stability of bbr. In Proceedings of IMC,
2022.

[57] Aditya Akella, Srinivasan Seshan, Richard Karp, Scott Shenker, and Christos Pa-
padimitriou. Selfish behavior and stability of the internet: A game-theoretic anal-
ysis of tcp. ACM SIGCOMM CCR, 32(4), 2002.

[58] Steve Chien and Alistair Sinclair. Convergence to approximate nash equilibria in
congestion games. In Proceedings of SODA, 2007.

[59] Tuan Anh Trinh and Sándor Molnár. A game-theoretic analysis of TCP vegas. In
Quality of Service in the Emerging Networking Panorama, 2004.

[60] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti,
Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi
Shi. The QUIC transport protocol: Design and internet-scale deployment. In
Proceedings of SIGCOMM, 2017.

[61] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. HTTP over UDP: an
Experimental Investigation of QUIC. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing (SAC), pages 609–614, 2015.

[62] Prasenjeet Biswal and Omprakash Gnawali. Does QUIC Make the Web Faster?
In Proceedings of IEEE Global Communications Conference (GLOBECOM), pages
1–6. IEEE, 2016.

[63] Péter Megyesi, Zsolt Krämer, and Sándor Molnár. How quick is QUIC? In Pro-
ceedings of International Conference on Communications (ICC), pages 1–6. IEEE,
2016.

[64] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and
Alan Mislove. Taking a Long Look at QUIC: An Approach for Rigorous Evaluation
of Rapidly Evolving Transport Protocols. In Proceedings of Internet Measurement
Conference (IMC), pages 290–303, 2017.

[65] Mirko Palmer, Thorben Krüger, Balakrishnan Chandrasekaran, and Anja Feld-
mann. The QUIC Fix for Optimal Video Streaming. In Proceedings of the Work-

174 BIBLIOGRAPHY

shop on the Evolution, Performance, and Interoperability of QUIC, pages 43–49,
2018.

[66] James Pavur, Martin Strohmeier, Vincent Lenders, and Ivan Martinovic. QPEP:
A QUIC-Based Approach to Encrypted Performance Enhancing Proxies for High-
Latency Satellite Broadband. In Proceedings of NDSS, 2021.

[67] Darius Saif, Chung-Horng Lung, and Ashraf Matrawy. An Early Benchmark of
Quality of Experience Between HTTP/2 and HTTP/3 using Lighthouse. In IEEE
International Conference on Communications (ICC), pages 1–6. IEEE, 2021.

[68] Google Chrome, Lighthouse, 2022. https://github.com/GoogleChrome/lighthouse.

[69] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementation Diversity. In
Proceedings of the Workshop on the Evolution, Performance, and Interoperability
of QUIC, pages 14–20, 2020.

[70] Neal Cardwell. tcp_BBR: add BBR congestion control, 2017.
https://bit.ly/2VAJcDD.

[71] The top 500 websites on the internet, 2018. https://www.alexa.com/topsites.

[72] DARPA. Internet protocol. RFC 791, 1981.

[73] Yuchung Cheng Jerry Chu, Nandita Dukkipati and Matt Mathis. Increasing TCP’s
Initial Window. RFC 6928, 2013.

[74] Jan Rüth, Christian Bormann, and Oliver Hohlfeld. Large-scale scanning of TCP’s
initial window. In Proceedings of IMC, 2017.

[75] Douglas Leith, R Shorten, and Y Lee. H-tcp: A framework for congestion control
in high-speed and long-distance networks. In Proceedings of PFLDnet, 2005.

[76] Tom Kelly. Scalable tcp: Improving performance in highspeed wide area networks.
SIGCOMM CCR, 33(2):83–91, 2003.

[77] Claudio Casetti, Mario Gerla, Saverio Mascolo, Medy Y Sanadidi, and Ren Wang.
Tcp westwood: end-to-end congestion control for wired/wireless networks. Wireless
Networks, 8(5):467–479, 2002.

[78] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, and
Van Jacobson. BBR Congestion Control. IETF Draft, 2017.
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-
control-00.

[79] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. Mahimahi: Accurate Record-and-Replay
for HTTP. In Proceedings of ATC, 2015.

BIBLIOGRAPHY 175

[80] GNU Project. wget, 2019. https://www.gnu.org/software/wget.

[81] Netfilter Organization. libnetfilter_queue, 2019. https://bit.ly/2HimY17.

[82] Sally Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, 2003.

[83] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha.
RACK: a time-based fast loss detection algorithm for TCP. IETF Draft, 2019.
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rack-05.

[84] TCP Optimizations - Akamai Developer, 2019. https://bit.ly/35LYJUx.

[85] David X Wei, Cheng Jin, Steven H Low, and Sanjay Hegde. Fast tcp. In In
Proceedings of IEEE/ACM Transactions on Networking, 2007.

[86] Brien Posey. Explore the cubic congestion control provider for windows, 2019.
https://bit.ly/2VfhxoA.

[87] TCP BBR congestion control comes to GCP: your Internet just got faster, 2017.
https://bit.ly/2Hk4WLH.

[88] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry.
Modeling bbr’s interactions with loss-based congestion control. In Proceedings of
IMC, 2019.

[89] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router buffers. In
Proceedings of SIGCOMM, 2004.

[90] Mihaela Enachescu, Yashar Ganjali, Ashish Goel, Nick McKeown, and Tim Rough-
garden. Routers with very small buffers. In Proceedings of INFOCOM, 2006.

[91] Bruce Spang, Serhat Arslan, and Nick McKeown. Updating the theory of buffer
sizing. Performance Evaluation, 151, 2021.

[92] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, Van
Jacobson, and Amin Vahdat. Tcp BBR congestion control comes to gcp – your
internet just got faster, 2017. https://tinyurl.com/yc7bd9jk.

[93] Venkat Arun and Hari Balakrishnan. Copa: Practical Delay-Based Congestion
Control for the Internet. In Proceedings of NSDI, 2018.

[94] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. Continuous in-network
round-trip time monitoring. In Proceedings of SIGCOMM, 2022.

[95] Tomoki Kozu, Yuria Akiyama, and Saneyasu Yamaguchi. Improving rtt fairness on
cubic tcp. In 2013 First International Symposium on Computing and Networking,
pages 162–167. IEEE, 2013.

[96] Mario Hock, Roland Bless, and Martina Zitterbart. Experimental evaluation of
BBR congestion control. In Proceedings of ICNP, 2017.

176 BIBLIOGRAPHY

[97] Jim Gettys. Bufferbloat: Dark buffers in the internet. IEEE Internet Computing,
15(3):96–96, 2011.

[98] Canada Sandvine Inc. Waterloo, ON. The 2022 global internet phenomena report,
2022. https://www.sandvine.com/phenomena.

[99] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: a new TCP-friendly high-speed
TCP variant. Operating Systems Review, 42:64–74, 07 2008.

[100] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: Congestion-based congestion control. Communications of
the ACM, 60(2):58–66, 2017.

[101] Facebook’s QUIC implementation, mvfst, 2022.
https://github.com/facebookincubator/mvfst.

[102] Google’s QUIC implementation, chromium, 2022.
https://www.chromium.org/quic/playing-with-quic.

[103] Microsoft’s QUIC implementation, msquic, 2022.
https://github.com/microsoft/msquic.

[104] Cloudflare’s QUIC implementation, quiche, 2022.
https://github.com/cloudflare/quiche.

[105] LiteSpeed’s QUIC implementation, lsquic, 2022.
https://github.com/litespeedtech/lsquic.

[106] Go’s QUIC implementation, quic-go, 2022. https://github.com/lucas-
clemente/quic-go.

[107] H2O’s QUIC implementation, quicly, 2022. https://github.com/h2o/quicly.

[108] Rust’s QUIC implementation, quinn, 2022. https://github.com/quinn-rs/quinn.

[109] Amazon Web Services’s QUIC implementation, s2n-quic, 2022.
https://github.com/aws/s2n-quic.

[110] Alibaba’s QUIC implementation, xquic, 2022. https://github.com/alibaba/xquic.

[111] Mozilla’s QUIC implementation, neqo, 2022. https://github.com/mozilla/neqo.

[112] P. Balasubramaniam, Y. Huang, and M. Olson. HyStart++: Modified Slow Start
for TCP, 2023. https://www.rfc-editor.org/rfc/rfc9406.

[113] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1), 1979.

[114] iPerf, the Speed Test Tool for TCP, 2021. https://iperf.fr/iperf-doc.php.

BIBLIOGRAPHY 177

[115] Akamai quic, 2023. https://akaquic.com/.

[116] Tommy Pauly. Quic usage at apple, 2021. https://tinyurl.com/applequic.

[117] Ietf QUIC implementation in haskell, 2023. https://github.com/kazu-
yamamoto/quic.

[118] askF5. Overview of the big-ip http/3 and QUIC profiles, 2022.
https://support.f5.com/csp/article/K60235402.

[119] Ietf QUIC implementation in java, 2023. https://bitbucket.org/pjtr/kwik/src/master/.

[120] ngtcp2, 2023. https://github.com/ngtcp2/ngtcp2.

[121] nginx-quic, 2023. https://hg.nginx.org/nginx-quic/.

[122] picoquic, 2023. https://github.com/private-octopus/picoquic.

[123] aioquic: QUIC network protocol in python, 2023.
https://github.com/aiortc/aioquic.

[124] quant, 2023. https://github.com/NTAP/quant.

[125] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. Mahimahi: Accurate record-and-replay
for HTTP. In Proceedings of USENIX ATC, 2015.

[126] Simon Scherrer, Markus Legner, Adrian Perrig, and Stefan Schmid. Model-
based insights on the performance, fairness, and stability of BBR. In Pro-
ceedings of the 22nd ACM Internet Measurement Conference, IMC ’22, page
519–537, New York, NY, USA, 2022. Association for Computing Machinery.
https://doi.org/10.1145/3517745.3561420.

[127] Injong Rhee, Lisong Xu, Sangtae Ha, Alexander Zimmermann, Lars Eggert, and
Richard Scheffenegger. CUBIC for Fast Long-Distance Networks. RFC 8312, 2018.
https://tools.ietf.org/html/rfc8312.

[128] ExpiredDomains.net. Alexa Top Websites - Last save, 2023.
https://www.expireddomains.net/alexa-top-websites/.

[129] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. Continuous in-network
round-trip time monitoring. In Proceedings of the SIGCOMM, 2022.

[130] Selenium, 2024. https://www.selenium.dev.

[131] Nebby, 2024. www.github.com/NUS-SNL/Nebby.

[132] The top 500 websites on the internet, 2023. https://www.alexa.com/topsites.

[133] Google. Personal correspondance, 2023.

178 BIBLIOGRAPHY

[134] Matt Joras and Yang Chi. How Facebook is bringing QUIC to billions,
2020. https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-
is-bringing-quic-to-billions/.

[135] NetFlix. Personal correspondance, 2023.

[136] Eirini Kakogianni Erik Carlsson. Smoother streaming with bbr, 2018.
https://engineering.atspotify.com/2018/08/smoother-streaming-with-bbr/.

[137] Nitin Garg. Engineering at Meta: Evaluating COPA congestion control for im-
proved video performance, 2019. https://engineering.fb.com/2019/11/17/video-
engineering/copa/.

[138] Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim Kurose, and Don
Towsley. Inferring TCP connection characteristics through passive measurements.
In Proceedings of INFOCOM, 2004.

[139] Shao Liu, Tamer Başar, and R. Srikant. TCP-Illinois: A Loss and Delay-based
Congestion Control Algorithm for High-speed Networks. In Proceedings of VAL-
UETOOLS, 2006.

[140] Daniel Pérez Palomar and Mung Chiang. A tutorial on decomposition methods for
network utility maximization. IEEE Journal on Selected Areas in Communications,
24(8), 2006.

[141] Tcp-brutal: Congestion control algorithm that increases speed on packet loss, 2023.
https://news.ycombinator.com/item?id=38164574.

[142] mKCP Transport, 2023. https://www.v2ray.com/en/configuration/transport/mkcp.html.

	Abstract
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Traditional CCA design
	Internet Transport is Evolving
	Summary of Thesis Contributions
	Understanding the Internet's evolving heterogeneous CCA landscape
	Nash Equilibria in Internet Congestion Control
	Speciation in QUIC Congestion Control

	Organization

	Background and Related Work
	Identifying Congestion Control Algorithms in the wild
	Why existing techniques fail

	Studying the interactions between CUBIC and BBR
	A Primer on BBR
	BBR's interactions with CUBIC
	Predicting BBR's future adoption on the Internet

	QUIC
	Speciation in QUIC Congestion Control

	The Great Internet TCP Congestion Control Census
	Background
	Methodology
	Measuring cwnd over time
	Designing a Network Profile
	Classification
	Implementation

	Results
	Verification of Measurement Accuracy
	TCP variants on the Internet
	Traffic Volume & Popularity
	Whithering the Unknown Variants
	TCP Evolution over the past Two Decades

	Discussion
	Summary
	Resources

	Are we heading towards a BBR-dominant Internet?
	Modelling Interactions between BBR and CUBIC
	Background
	Issues with Model by Ware et al.
	Basic 2-Flow Model
	Modelling Multiple Flows

	Model Validation
	Basic 2-Flow Model
	Multiple Flows
	Varying the Proportion of Flows

	Applying Game Theory
	NE for flows with similar RTTs
	Other Congestion Control Algorithms
	Complex Utility Functions
	Experimental Verification
	Flows with different RTTs
	BBR Predictions applied to BBRv2

	Discussion
	Summary

	Containing the Cambrain Explosion in QUIC Congestion Control
	Methodology
	Measuring similarity between implementations
	Defining the Performance Envelope
	Quantifying similarity with Conformance and Conformance-T
	Experiment Setup

	Measurement Results
	Conformance of CCA implementations of mainstream QUIC stacks
	Investigating Conformance ``in the Wild''
	Fairness between Implementations
	Contradicting known trends in inter-CCA fairness

	Fixing low-conformance implementations
	Discussion
	Summary
	Resources

	Keeping an Eye on Congestion Control in the Wild with Nebby
	Background & Motivation
	Replicating Gordon
	Why CCA Identification is Hard

	Methodology
	Estimating Bytes in Flight (BiF)
	Handling QUIC packets
	Minimal Set of Network Profiles
	Designing an Extensible Classifier
	Supporting Web Browsers & Multiple Flows using Selenium

	Evaluation
	Measurement Accuracy and Usability
	Results for Alexa Top 20k Websites
	Extending Nebby to identify new CCAs
	CCA Implementations in QUIC Stacks
	Video Measurements with Selenium

	Discussion
	Summary
	Resources

	Conclusion
	Summary of Internet CCA Evolution (2001–present)
	The cause and effect of CCA heterogeneity
	Future Work

	Bibliography

