Check for
Updates

Keeping an Eye on Congestion Control in the Wild with Nebby

Ayush Mishra®, Lakshay Rastogi*, Raj Joshi', and Ben Leong’

"National University of Singapore *Indian Institute of Technology, Kanpur

ABSTRACT

The Internet congestion control landscape is rapidly evolving. Since
the introduction of BBR and the deployment of QUIC, it has become
increasingly commonplace for companies to modify and implement
their own congestion control algorithms (CCAs). To respond effec-
tively to these developments, it is crucial to understand the state of
CCA deployments in the wild. Unfortunately, existing CCA iden-
tification tools are not future-proof and do not work well with
modern CCAs and encrypted protocols like QUIC. In this paper, we
articulate the challenges in designing a future-proof CCA identifi-
cation tool and propose a measurement methodology that directly
addresses these challenges. The resulting measurement tool, called
Nebby, can identify all the CCAs currently available in the Linux
kernel and BBRv2 with an average accuracy of 96.7%. We found that
among the Alexa Top 20k websites, the share of BBR has shrunk
since 2019 and that only 8% of them responded to QUIC requests.
Among these QUIC servers, CUBIC and BBR seem equally popular.
We show that Nebby is extensible by extending it for Copa and
an undocumented family of CCAs that is deployed by 6% of the
measured websites, including major corporations like Hulu and
Apple.

CCS CONCEPTS

« Networks — Transport protocols; Public Internet; « General
and reference — Measurement;

KEYWORDS
congestion control; measurement study

ACM Reference Format:

Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. 2024. Keeping an
Eye on Congestion Control in the Wild with Nebby . In ACM SIGCOMM 2024
Conference (ACM SIGCOMM °24), August 4-8, 2024, Sydney, NSW, Australia.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3651890.3672223

1 INTRODUCTION

The composition of the Internet’s congestion control landscape
impacts how we size router buffers [16, 58], think about inter-flow
fairness [37, 51, 61], and even decide on the deployability of new con-
gestion control algorithms (CCAs) on the Internet [60]. In the past,
relatively infrequent snapshots of the Internet’s composition were
sufficient to understand its congestion control landscape [46, 54].

This work is licensed under a Creative Commons Attribution International 4.0 License.

ACM SIGCOMM °24, August 4-8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0614-1/24/08.
https://doi.org/10.1145/3651890.3672223

136

However, recent developments suggest that CCAs on the Internet
are evolving faster than ever before.

The deployment of BBR and its variants is a perfect example of
this rapid evolution. While BBR was first introduced back in 2016,
the algorithm has continued to evolve over the years. At the time
of writing, Google alone is known to have deployed three different
versions of BBR [13, 22, 33]. Outside of Google, operators have also
been found to deploy modified versions of BBR according to their
own needs [48].

The adoption of QUIC [39] on the Internet is another catalyst
that has influenced the evolution of the Internet’s CCA landscape
in recent years. While the QUIC standard itself does not introduce
any new CCAs, QUIC congestion control is implemented in the
user space and thus makes it significantly easier to implement new
CCAs and to deploy modified versions of existing CCAs. There is
evidence that operators are already deploying their own variants of
CCAs like CUBIC and BBR in their QUIC stacks [47]. These variants
can behave very differently from their kernel counterparts.

Given that these developments have major consequences for the
Internet’s congestion control landscape, it is crucial to keep an eye
on CCAs in the wild. Unfortunately, existing CCA identification
tools [24, 31, 46, 50, 54, 63] do not work well with modern CCAs
and encrypted protocols like QUIC.

In this paper, we revisit the problem of CCA identification from
first principles and articulate the key challenges in the context of
today’s rapidly evolving CCA landscape (§2.1). In particular, we
argue that a CCA identification technique needs to be future-proof
to handle new and yet unknown CCAs. We also need a new metric
that can work well with modern rate-based CCAs. To address these
challenges, we propose a principled approach to CCA identification
that is extensible by design (§3).

Our approach is implemented as a tool called Nebby that uses
bytes in flight (BiF) instead of the cwnd metric used by previous
approaches [24, 31, 46, 50, 54, 63]. Our key insight is that since
rate-based CCAs use cwnd as a safeguard and not an operating
point, measuring the cwnd is not sufficient for telling them apart.
On the other hand, while BiF is equivalent to cwnd for loss-based
CCAs, we show that it allows us to distinguish between different
rate-based CCAs. To accurately estimate the BiF at the client, we
introduce additional latency at a local bottleneck to gain visibility
over a larger portion of the pipe between the target server and the
client (§3.1). We also found a way to accurately estimate BiF for
encrypted QUIC traffic (§3.2).

Our extensible classifier identifies CCAs by extracting segments
based on the frequency and shape of their characteristic BiF peri-
odic oscillations during steady state. Our approach works because
existing CCAs converge to a congestion avoidance phase in the
steady state. By identifying these characteristic segments for each
CCA’s BiF trace, we show that a simple shape-based classifier is

https://doi.org/10.1145/3651890.3672223
https://doi.org/10.1145/3651890.3672223
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3651890.3672223&domain=pdf&date_stamp=2024-08-04

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

sufficient to identify all 12 CCAs available in the Linux kernel

v5.18, and BBRv2 [22], with an average accuracy 96.7% (§4.1). Mea-

surements are generally noisy. However, because there are many
repeated segments in a trace, we have many opportunities to suc-
cessfully detect the segments that correspond to different CCAs.

To the best of our knowledge, Nebby is the first CCA identification

tool that can identify CCAs for TCP and QUIC web servers and

over a wide range of interactive applications.

We used Nebby to measure the Alexa Top 20,000 websites' during
the period between Jun 2023 and Oct 2023 and made the following
findings (§4):

(1) While CUBIC remains the most popular CCA on the Internet,

the deployment of CCAs can differ by region for TCP. We found

that while TCP BBR’s adoption is still substantial, its deploy-
ment in regions like Mumbai and Sao Paulo lags behind Ohio
and Paris (§4.2).

Comparing our results with those from our earlier measurement

study in 2019 [49], we found that BBR’s share shrunk among

the Alexa Top 20,000 websites since 2019. In fact, some websites
have since switched from BBRv1 to CUBIC (§4.2).

BRRv2 was publicly released by Google in 2019. Most new

adopters of BBR deployed BBRv2, instead of BBRv1. This is a

positive sign, since BBRv2 is less aggressive towards loss-based

flows. However, most of the early adopters of BBR (who are
still running BBR) continue to run BBRv1, and have not yet
migrated to BBRv2 (§4.2).

(4) We detected the testing and deployment of BBRv3 in June 2023
before it was formally announced at the IETF in August 2023.
This finding was confirmed by Google and demonstrates that
Nebby is able to successfully detect the deployment of new and
undocumented variants on the Internet by major players (§4.2).

(5) We uncovered a group of websites deploying a class of un-
known variants, which we call AkamaiCC. These CCAs are
characterized by a blocky sending behavior and behave unlike
any other known CCAs. Popular websites using AkamaiCC
include apple.com, hulu.com, and tiktok.com (§4.3).

(6) We show that QUIC adoption among the Alexa Top 20k websites
is still relatively limited, with only about 8% of the websites
measured responding to QUIC requests. CUBIC and BBR seem
equally popular among the deployed QUIC services (§4.4).

(7) We successfully identified the CCAs used by popular websites
to serve video and audio traffic over interactive sessions over a
Chrome browser. In addition, we found that it was common for
different CCAs to be used for different content. BBR seems to
be the CCA of choice for video streaming flows, while CUBIC
is often used for static content (§4.5).

2 BACKGROUND & RELATED WORK

In this section, we provide some background on identifying conges-
tion control algorithms (CCAs) on the Internet and describe how
previous measurement techniques work. We will explain how this
problem has become progressively harder over the years and why
previous approaches are no longer viable.

'While Alexa has since been shut down, we used the last updated list [12] from
February 2023 to do our measurements.

137

Mishra et al.

There have been many previous measurement studies to identify
CCAs deployed by web servers [24, 31, 46, 50, 54, 63]. In the early
2000s, this was a relatively straightforward problem to solve because
the number of available CCAs was small. For example, the earliest
of these studies [46, 54] only had to differentiate between Reno [55],
New Reno [36], and Tahoe. They could therefore design simple but
ad hoc methodologies to differentiate between them. However, as
a result, their tool (TBIT) was not easily extensible to work with
more sophisticated CCAs like CUBIC [34] and CTCP [59].

These shortcomings with TBIT motivated the design of CAAI [63]
in 2011. CAAI was less ad hoc and measured how the cwnd of a
CCA evolved during a connection. The measurement was made by
delaying and batching ACKs sent by the client and taking advan-
tage of the fact that most CCAs are ACK-clocked. However, this
technique no longer works once rate-based CCAs, like BBR, were
introduced on the Internet. Rate-based CCAs pace their packets, so
delaying ACKs will no longer allow us to measure the cwnd.

Subsequently, Gordon [50] and Inspector Gadget [31] were pro-
posed. Gordon resorted to dropping packets to estimate the cwnd,
while Inspector Gadget continued to use delayed ACKs to estimate
the cwnd of a sender over a variety of network conditions. Both
these tools were ultimately able to classify BBR, but they each had
their own shortcomings. Gordon’s strategy of dropping packets re-
peatedly over hundreds of connections is too aggressive and is now
blocked by most websites on the Internet. We attempted re-running
Gordon and were only able to successfully identify 4% of the Alexa
Top 10,000 websites (details can be found in Appendix A). Inspector
Gadget’s machine learning-based classifier was prone to overfitting
and could not detect the deployment of new and unknown CCAs.
For example, even though both Gordon and Inspector Gadget per-
formed their measurements in 2019, Gordon was able to catch the
deployment of a proprietary CCA by Akamai [50] while Inspector
Gadget was not able to do so.

In summary, a common critique of previous CCA identification
tools is that none of them are sufficiently future-proof, and they risk
quickly becoming obsolete as new and more sophisticated CCAs
are deployed on the Internet. Nebby is designed to be future-proof
and we adopt a number of strategies to ensure that it can be easily
extensible in the future. In §2.1, we discuss the challenges associated
with designing a future-proof CCA identification tool and briefly
describe how we address each of them in developing Nebby.

Inferring CCA Properties. There have also been several pre-
vious works that try to infer the properties of CCAs rather than
identifying them. Jaiswal et al. used cwnd and RTT estimates to
understand the impact of a CCA on the throughput and RTT on
the Internet [41]. Hagos et al. use machine learning over passively
collected traces to infer the state of a CCA [35]. Ferreira et al. de-
veloped Mister 880 to reverse engineer CCAs seen in the wild [27].
While in theory Mister 880 could be extended to identifying CCAs
on the Internet, it only works for relatively straightforward AIMD
CCAs. All these works are promising approaches in their respective
domains, but they cannot be applied directly to CCA identification.

2.1 Why CCA Identification is Hard

At a high level, CCAs can be distinguished from each other based
on how they react to different network conditions. Therefore, the

Keeping an Eye on Congestion Control in the Wild with Nebby

-
W
o

130

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

—
~
o
-
N
15}

./'”'\-\/./'—'/'\

= BBRvl (1.25 gain)
x BBRv1 (1.5 gain)

-
=
o
-
=
15}

cwnd (packets)
cwnd (packets)

x

w—/‘\,

10 12 14

RTT (#)

16 18 10 12

(a) Gordon [50]

14
RTT (#)

)
<20
e
=
2 15
BBRv1 (1.25 gain) ™ —— BBRv2 (1.25 gain)
BBRv1 (1.5 gain) g 10 —— BBRv1 (1.5 gain)
o
16 18 2.5 3.0 3.5
Time (s)
(c) Nebby

(b) Inspector Gadget [31]

Figure 1: Comparison of cwnd to BiF for BBRv1’s ProbeBw phase.

basic approach of identifying CCAs on the Internet is relatively
straightforward. We need to emulate different network profiles while
connecting to a web server and measure how it reacts to them
using some metric. Here, we define the network profile as some
combination of bandwidth and delay constraints enforced by the
measurement tool on the connection.

However, the devil is in the details, and there are currently a large
number of CCAs that are available and deployed on the Internet
today. Moreover, there are additional challenges associated with
identifying CCAs on the Internet in a future-proof way. In this
section, we articulate the key challenges for CCA identification and
the requirements for further extensibility.

Establishing Causality. To accurately identify a CCA, we need
to be confident that the response seen is indeed caused by our net-
work profile and not any other natural variation in the network.
This was less of a problem for early tools that used network pro-
files that generated responses that were unlikely to naturally occur
on the Internet. For example, TBIT [46, 54] drops all the packets
after initiating a connection and CAAI [63] delays ACKs by 1 sec-
ond. Since both these behaviors rarely happen on the Internet, the
responses they elicit can be safely assumed to be caused by the
measurement tool and not the network. However, as discussed ear-
lier, this is not effective when classifying more sophisticated CCAs.
To address this, more recent tools like Inspector Gadget [31] and
Gordon [50] create a localized bottleneck and apply more generic
network profiles to it. Since most network variations happen at the
bottleneck, this limits the possibility of natural variation on the
Internet impacting the connection. Nebby also adopts this strategy
to ensure causality is maintained between the network profile and
the CCA’s response.

Handling Noisy Measurements. Cross-traffic and network
bottlenecks between the probing server and the target server will
naturally introduce noise in the measurements. There is a need to
eliminate noisy measurements. The general approach is to repeat
measurements to eliminate outliers [49]. Gordon also attempted to
do so by repeating measurements from different vantage points [49].
Nebby also repeats a measurement up to 5 times if it is not able to
successfully classify it, albeit from the same vantage point. This will
allow us to determine if websites deploy different CCAs in different
regions. Within each trace, we have many repeated segments, so
we have many opportunities to pick out the characteristic shape of
the CCA even when there is noise.

Handling New & Unknown CCAs. Given that we expect more
new and unknown CCAs to be deployed in the wild, a modern CCA
identification tool must also be able to provide insight into the
behavior of CCAs that it is not able to classify. Subsequently, it
should be able to determine that they are substantively different

138

from known CCAs. This is becoming increasingly important with
the deployment of new and modified CCAs in QUIC [47]. The early
tools were mainly classification tools [54, 63] that attempted to
classify CCAs among a known set of CCAs and were not able to
detect new variants. Machine-learning-based like Inspector Gad-
get [31] and the work of Chen et al. [24] fare no better. Gordon was
the first tool that conclusively detected an unknown and undocu-
mented variant, by showing that Akamai deployed their own CCA
variant [50], which we referred to as AkamaiCC.

Probe Traffic Cannot Seem Hostile. Padhye and Floyd had
clearly articulated that a CCA identification tool must not generate
traffic that would be construed to be malicious to a web server [54].
In this light, it was surprising that Gordon [50] even worked at all in
2019, given that it opens connections hundreds of times and drops a
large number of packets. Modern DDoS defenses have since kicked
in and so Gordon is blocked for many websites. Nebby adopts a
mostly lightweight approach when probing websites, and does not
even introduce packet drops, unlikely previous tools[50, 54, 63].

Need for a Good Metric. Any response to a given network
profile must be measured as a change in some metric, like the
sending rate or the cwnd, which is defined as the maximum number
of unacknowledged packets. The sending rate of a flow is hard to
measure accurately since it will be modified by every bottleneck it
encounters on its path to the receiver. All previous tools therefore
measure how the cwnd of a CCA changes during a connection.
However, while cwnd was shown to be sufficient for identifying
window-based CCAs and BBR [50], measuring the cwnd is not
sufficient to differentiate between rate-based CCAs.

The reason why cwnd does not work well for rate-based CCAs
is that cwnd is typically used by rate-based CCAs as a safeguard
and not an operating point. Given that using the cwnd can mask
a sender’s true behavior and estimating their sending rate is not
practical, Nebby elects to measure bytes in flight (BiF), which is
defined as the instantaneous number of unacknowledged packets,
to determine a target server’s response to a network profile (see
details in §3.1).

In Figure 1, we plot the cwnd and BiF for two versions of BBR
with the same cwnd but different pacing gains (1.25 and 1.5). It is
clear that cwnd measurements (from Gordon and Inspector Gadget)
do not allow us to differentiate between these two different versions
of BBR, while BiF measurements (from Nebby) allow us to tell them
apart. Since all previous CCA identification tools [24, 31, 46, 50,
54, 63] measure cwnd changes, they will not be extensible to the
current crop and future iterations of rate-based CCAs.

Handling encrypted packets. The latest challenge posed to
identifying CCAs on the Internet is transport protocols like QUIC.

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia Mishra et al.
Table 1: Properties of CCA Identification tools.
Primary Design Goals Extensibility Requirements
Tool Causality Robustness Identify Cannot seem | Good Works with ~ Client
to Noise Unknown CCAs Hostile Metric Encryption Agnostic
TBIT [46, 54] X X X v X X X
CAAI [63] X X X v/ X X X
IG [31] v v X v X X X
Gordon [50] v v v X X X X
Nebby v v v v v v v
Since all previously discussed CCA identification tools were de- Lab setting Internet setting
CE N
signed for TCP, they utilize the sequence and ACK numbers that are l ;::::::::::::E
exposed unencrypted in the TCP header. However, QUIC packets o oooo — c“::t

are completely encrypted and only expose the source and destina-
tion IPs and the flow ID. Therefore, previous approaches are not
directly extensible to QUIC. To support non-TCP and QUIC flows,
we need to be able to measure the response to a network profile
without the need for sequence numbers and ACK numbers.

Need to be Client Agnostic. Earlier tools [24, 31, 46, 50, 54,
63] were able to classify traffic serving only a small set of TCP-
based clients (like wget and curl). Since the choice of CCA can be
expected to be influenced by the kind of application it supports, an
ideal CCA identification tool needs to support a large variety of
clients. In fact, for a modern CCA identification tool to be extensible
and future-proof, there is a need for the tool to be client-agnostic.

Summary. In Table 1, we summarize how Nebby compares with
existing tools in addressing the various challenges and extensibility
requirements. Our key contributions are twofold: we found a more
accurate metric (BiF) that works well even for rate-based TCP vari-
ants and also added support for identifying CCA variants deployed
on modern QUIC stacks and web browsers.

3 METHODOLOGY

Our general approach is relatively straightforward: we start a flow
from a client to the target web server. The packets in the flow (both
data and ACKs) are recorded at a local bottleneck (that we call the
capture point) along the path between the client and server (that
we will refer to as the pipe). In addition to recording the packets,
the capture point is able to change the bandwidth available to the
flow, introduce additional delay, and also drop packets.

The captured trace is then processed with a classifier (§3.4) to
identify the CCAs. By decoupling capturing of the trace and the
classification process, we make it possible for the accuracy of the
system to be improved incrementally without having to re-do our
measurements. Our high-level approach is no different from previ-
ous approaches.

The key innovation in our work is in how we address the chal-
lenges laid out in §2.1 to ensure backward compatibility and future
extensibility, as follows:

(1) Instead of attempting to estimate cwnd, we estimate BiF? by
introducing additional delay at the capture point (§3.1);

(2) We developed techniques to handle QUIC packets (§3.2);

(3) We use a minimal set of two network profiles that we show is
sufficient to identify all 12 TCP variants in Linux kernel v5.18
and BBRv2 (§3.3);

2For loss-based (AIMD) TCP variants, cwnd and BiF are equivalent.

139

Internet setting with delay

HE DR DR e .
ettt 00
Ooooooooao

e additional delay Client

I : capture point I : Data packets [: ACK packets

Figure 2: Using additional delay to increase the ratio of visible
in-flight packets.

(4) We designed an extensible classifier that can identify all existing
TCP variants in Linux kernel (§3.4) and show that it can be easily
extended to identify new TCP variants (§4.3); and

(5) Our approach can also be extended to support new applications
and multiple flows (§3.5).

3.1 Estimating Bytes in Flight (BiF)

Consider a server and a client as shown in Figure 2. In a controlled
lab setting, we can measure the BiF of a flow by setting up the
capture point near the server because everything between the cap-
ture point and the client is visible. This is not possible for a remote
server on the Internet, since the capture point can only be set up
near the client. In such a situation, it is difficult to estimate the
BiF accurately since the majority of the packets in the pipe are not
visible.

Our key insight is that if we artificially introduce additional
delay between the capture point and the client, we will then have
visibility over a larger portion of the pipe and hence will be able to
estimate BiF more accurately. In particular, because current Internet
latencies are small (~20 ms [57]), by introducing a latency of x ms,
we can effectively have visibility over 55 of the pipe.

To determine the additional delay required, we set up control
servers running different CCAs on AWS and measured their BiF
with different amounts of delay introduced. We then compared
these measurements with the ground truth BiF values exported
directly from the sockets of these control servers. We plot the
results of these experiments in Figure 3 for a server running CUBIC,
Reno, and BBR. From these results, we see that the accuracy is
close to 100% when the total additional delay is larger than 90 ms.
Beyond this, accuracy might even drop. We found that this trend
was consistent for all the CCAs available in the Linux kernel.

For TCP packets, we record the largest ACK and sequence num-
bers at the capture point and use the difference between them to
estimate the BiF. We also track re-transmissions and lost packets
to correct BiF estimates accordingly.

Keeping an Eye on Congestion Control in the Wild with Nebby

100
E 80
Z 60
T
5 4p- e CUBIC
o
9 Reno
< i s
20 m BBR
20 40 60 80 100 120 140 160 180 200

Additional delay emulated by Nebby (ms)
Figure 3: Impact of the additional delay on accuracy.

3.2 Handling QUIC packets

QUIC packets are encrypted and sequence numbers are not visible.
In fact, there is no way to tell if a QUIC packet is a data packet or
an ACK packet from the raw packet trace. Even if we were able
to make this distinction, it is difficult to estimate how many bytes
each ACK packet is acknowledging without access to the sequence
numbers.

We address these uncertainties by making some realistic assump-
tions about a QUIC connection: (i) During a connection, we assume
that all QUIC packets originating from the remote server are data
packets and all the packets originating from the client are ACK
packets. Since we care only about the BiF of the CCA running at
the server and not the client, this assumption introduces no inac-
curacies in our measurements. (ii) We also assume that each ACK
packet acknowledges a fixed number of bytes. We estimate this
value by dividing the total bytes transmitted by the server during
the connection by the total number of ACK packets sent by the
client. This is a fair assumption because most QUIC servers use a
constant ACK frequency for the entire connection.

We exported the actual BiF logs from a quiche [3] sender run-
ning on an AWS instance and then compared it with what Nebby
was measuring from a client machine. We ran this experiment for
20 trials in two different AWS regions. We found the accuracy of
our BiF estimates for QUIC to be higher than 97%.

3.3 Minimal Set of Network Profiles

To recap, a network profile is a combination of some bandwidth,
delay, and buffer constraints applied at the capture point, together
with some actions like packet drops. Each network profile is an
opportunity to differentiate between CCAs based on how they
respond to that network profile. It is entirely possible that two
different CCAs may have the same response to a network profile.
In such cases, we need to perform measurements over additional
network profiles that can help us differentiate between them. There-
fore, the goal is to find the minimum number of network profiles
required to differentiate between all the CCAs. Given that there are
currently 12 available TCP variants in the Linux kernel v5.18 (and
BBRv2 in Google’s custom kernel), it was not surprising that we
were not able to find one network profile that was able to allow us
to distinguish between all of them.

However, we found that we were able to identify all 13 known
CCAs with just 2 network profiles and without the need to introduce
arbitrary packet drops, unlike previous approaches [49, 63]. By
not introducing arbitrary packet drops, it not only simplifies the
design of the network profile but also makes it less likely that our

140

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

connection would be perceived as malicious by a remote sender.
However, Nebby does allow natural packet drops to happen when
there is a buffer overflow at its localized bottleneck buffer.

Impact of bottleneck bandwidth. With a smaller bottleneck
bandwidth, it would take longer to download a given webpage. This
means that we would see a longer measurement trace, and provide
us with more information from a single measurement. However, we
found the BiF traces to be extremely noisy at bandwidths lower than
100 Kbps. On the other hand, if the emulated bottleneck bandwidth
was larger than 200 Kbps, the noise was significantly reduced.

We crawl all the target websites to find the largest available
webpage. For all the target websites, we were able to find a page that
was at least 400 KB in size. This meant that all our measurements
would be at least 16 s long. In practice, all our measurements were
longer than 18 s because of slow start.

Set of 2 Network Profiles. Nebby makes all measurements with
a bottleneck bandwidth of 200 Kbps and the bottleneck buffer set at
2 BDP. We found that by introducing a 50 ms one-way delay using
Mahimabhi [53], the network profile would result in visually distinct
BiF graphs for all 13 known CCAs. However, since some CCAs
can have similar shapes under this network profile (like New Reno,
Tllinois, and HSTCP (see Figures 4g, 4h, and 4d)), we also added
an additional network profile with a larger delay (100 ms one-way
delay). We plot the BiF vs time graph for all the CCAs in the Linux
kernel under both these network profiles in Figure 4.

3.4 Designing an Extensible Classifier

Our classification methodology is based on the observation that
all CCAs, regardless of their underlying philosophy, will eventu-
ally converge to a stable operating point in the steady state, i.e.
congestion avoidance phase. This is typically done in one of two
ways: (i) they either oscillate about their target operating point
using congestion signals as periodic negative feedback (loss-based
AIMD/MIMD CCAs) or (ii) they try to predict the correct operating
point by explicitly modeling the network path (BBR and its vari-
ants). Even if a CCA adopts the later approach, the sender will have
to probe the network periodically to obtain accurate measurements
to update its network model. For BBR, these probing behaviors take
form as the ProbeBW and ProbeRTT phases.

To exploit this periodicity in a CCA’s behavior to classify existing
TCP variants currently available in the Linux kernel, including
BBRv2[22], our classifier extracts these periodic behaviors from
BiF measurement traces and classifies them as different CCAs based
on their periodicity and shape (see Figure 5). For the set of known
CCAs in the kernel, we developed 2 classifiers: one for loss-based
CCAs and another for BBRv1/v2. We can easily extend Nebby to
identify more CCA variants by adding new classifiers that can be
run concurrently with our 2 current classifiers. We describe how
this works in §4.3.

Before a trace can be used for classification, we first remove
the noise with a low-pass filter ("smoothening") and segment the
smoothened trace into several chunks. These segments are then sent
to the different (currently 2) classifiers. This process is summarized
in Figure 6. We describe the various components in detail below.

@ Smoothening. The raw BiF traces captured can be noisy
because of ACK compressions and cross traffic on the Internet. To

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia Mishra et al.
14 * 3.0 25 — 100ms
. 25)s . — 50ms

g 52 520 5
8 < < 15
8 g gt 8
< £10 < <10
) @ @10 a
¥ 4 ¥4 ¥ b4
2 — 100ms 5 0.5 s
0 — 30ms 0 0.0 0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Time (s) Time (s) Time (s) Time (s)
(a) CUBIC (b) BIC (c) BBRv1 (d) HSTCP
30 25
—— 100 ms 25 —— 100 ms —— 100 ms 25 —— 100 ms
25 — 50ms — 50ms — 50ms — 50ms
20
o = 20 o = 20
R 5 5, 5
< c15 < c15
g” 5 g g
£ £10 £10 £10
3 3 3 3
4 X X 3
5 5 5 5
0 0 0 0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Time (s) Time (s) Time (s) Time (s)
(e) Scalable (f) HTCP (g) New Reno (h) llinois
25 —— 100ms 15.0 —— 100 ms —— 100 ms 25 — 100ms
— 50ms — 50ms — 50ms — 50ms
12.5 6
o 20 o " = 20
2 2 = 2
Ef 3100 S})
e : c4 £1s
% 3 7° 8 8
£ 10 S S 510
3 3 50 3 3
¥4 Z ¥ 2 ¥4
5 2.5 5
0 0.0 0 [
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Time (s) Time (s) Time (s) Time (s)
(i) Westwood (j) YeAH (k) Vegas (1) Veno

Figure 4: Traces of TCP congestion control algorithms in the current Linux kernel.

A
5
] | periodicity of CUBIC's shape
| CUBIC's oscillations !
— >
' >
A
: ! BBR's shape
= : : (
- 1 U
m

periodicity of
BBR's oscillations

»
' o

Figure 5: Characteristic features of periodic oscillations for
CUBIC and BBR.

remove this noise, we remove all the variations that happen at
timescales that are shorter than an RTT (since they are likely to be
introduced by the network and not the CCA) by applying an FFT
on the BiF values and removing all component frequencies that are
larger than ﬁ

@ Segmentation. Since most CCAs have similar slow start
phases, we ignore slow start and attempt to identify CCAs using
only their behavior during congestion avoidance. As discussed ear-
lier, CCAs typically exhibit periodicity during congestion avoidance,
where they periodically probe for more bandwidth, and then even-
tually back off when they encounter congestion, or if the buffer

141

overflows. We extract these periodic waveforms as individual seg-
ments that are punctuated by periods of ‘back-offs, by computing
the first derivative over the BiF trace and identifying the back-offs
by their characteristic high negative gradients. We extract the re-
gions between these back-offs as individual segments for a given
trace. A typical trace generally gets divided into multiple segments.

Loss-based (AIMD) Classifier. Loss-based CCAs exhibit peri-
odicity because they back off periodically after a buffer overflow.
The key approach to classification is to fit all the input segments
as polynomials and then classify them based on the coefficients
of these polynomials by comparing them to the coefficients of the
reference implementations in the Linux kernel.

@ Sampling and Polynomial Fitting. The input segments
will generally be of varying lengths. Hence, we first normalize
all the BiF values for a segment between 0 and 1 and sample 200
points uniformly on the segment. We then try to fit first, second,
and third-degree polynomials to these 200 points using numpy’s
polyfit function. We do not go beyond third-degree polynomials
because we found that a cubic polynomial is sufficient to capture
the shape of the most complicated waveforms that are generated
by CCAs like CUBIC. Each of these polynomials is ranked based
on the following error score:

Error = MSE + A * Degree * Sum(coefficients)

Keeping an Eye on Congestion Control in the Wild with Nebby

Smoothening

(3’) Sampling and Polynomial fitting

a1x3 + b1x2 + c1x = 0

Segments / > 2233 + bx? + cx = 0

_> /,/ /—»a;x3+b3x2+c3x:o
—
f) Clustering and Classification
a
S BBR Classifier

cusic
dy
ax A A—A\ b

o (a1, by, c1),
4 (a2, b2, 2),
and (a3, b, c3)
Detect the frequency and
amplitude of the bandwidth
and RTT probes

fit in the
¢ CUBIC cluster.

Classifiers for other CCAs

Figure 6: How Nebby’s Classifier works.

Table 2: Different degree clusters with their CCAs.

Linear Quadratic Cubic
BIC, YeAH, Scalable, | Illinois, New Reno, | CUBIC,
HSTCP, Vegas, Veno Westwood HTCP

Here, the MSE is the mean square error and A is a tunable param-
eter that can be set to a constant between 0 and 1. We note that
our error function bears a similarity to common Lasso regression
functions and penalizes polynomials with higher degrees. This is
because, in general, it is easy to over-fit higher-degree polynomials.
We therefore need to add a penalty term for these higher-degree
polynomials. We empirically set A to 0.7 since we found that this
results in the clearest distinctions between different polynomials.
The output of this procedure is up to 3 coefficients a, b, and c for
each segment.

@ Clustering and Classification. Once we have represen-
tative polynomials for all the segments for a measurement trace,
we compare the shapes of these segments with those of known
loss-based CCAs by comparing their coefficients (a, b, and c) to that
for the fitted polynomials. As noted earlier, each trace will often
yield multiple segments. In such cases, we classify a trace as a CCA,
if (i) all or some of its component segments match a known CCA;
and (ii) none of the segments match another known CCA. In other
words, a trace will be classified as a known CCA if only some of
its segments match a known CCA while the other segments are
classified as unknown. There were no instances where the segments
from a trace were matched to two different CCAs in any of our
measurements.

To generate the control data required to derive the required co-
efficients for the known CCAs, we set up control servers in AWS
instances in Singapore, Mumbai, Ohio, Paris, and Sao Paulo and
measured them from a host in our laboratory using Nebby. The
measurements were made using the two network profiles described
in §3.3. Each CCA was run 50 times from each vantage point, giving
us a total of 250 measurements for each CCA. For each CCA, we
determined the representative polynomial using polyfit as previ-
ously described, giving us a large number of polynomials for each
CCA. Since each measurement can consist of multiple segments,
we were able to derive hundreds of polynomials for each CCA from

142

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

e BIC
YeAH

e Scalable

e HSTCP

a e \egas

e \Veno
lllinois

e New Reno
Westwood

e CUBIC

e HTCP

Figure 7: Coefficients for the polynomials (ax®+bx?+cx+d = 0)
of all the loss-based CCAs form distinct clusters.

our 250 measurements. The polynomials assigned to the segments
for the known CCAs in the Linux kernel are listed in Table 2. The
clusters formed by all the coefficients of these polynomials are
illustrated in Figure 7. We can see that with our chosen network
profiles, the loss-based CCAs formed distinct clusters that allowed
us to tell the different CCAs apart. In Appendix B, we provide a
detailed description of how we match a segment’s coefficients with
those of known CCAs. The details are omitted here due to space
constraints.

BBR Classifier. Our BBR classifier classifies a trace as either
as BBRv1, BBRv2, or Unknown. We identify the variant by scanning
for BBR’s characteristic periodic probing behavior, as follows:

e BBRv1 has a characteristic bandwidth probing behavior where
it increases the sending rate by 25% every 8 RTTs (i.e. ProbeBW).
This behavior is clearly visible to Nebby (as seen in Figure 1c)
and easily detectable by looking for periodic spikes in the first
derivative w.r.t. to the time of the extracted segments. BBRv1
also backs off every 10 seconds in order to estimate the minimum
RTT of the path (i.e. ProbeRTT). Therefore, if we see a rate-based
sender probe for bandwidth every 8 RTTs and backing off every
10 seconds, we conclude that the sender is BBRv1.

The probing periods for BBRv2 are less well-defined. After slow
start, BBRv2 typically enters its bandwidth cruise phase where
it sends at the bottleneck bandwidth without any probing for a
period that depends on the BDP. For our network settings, this
probe period is about 2 seconds. Like BBRv1, BBRv2 also backs
off periodically to measure the minimum RTT, albeit every 5
seconds. Therefore, if we see a rate-based sender that is stable
during congestion avoidance for at least 2 seconds and backs off
every 5 seconds, we conclude that the CCA must be BBRv2.
Handling New & Undocumented CCAs. Given the design of
our classification framework, it can extended naturally in 3 ways: (i)
existing classifiers can be modified to use the segment correspond-
ing to Slow Start; (ii) an additional classifier can be constructed from
observing the properties of a new CCA (an example is described in
§4.3); or (iii) additional network profiles can be added.

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Mishra et al.

Table 3: Classification accuracy (Confusion Matrix).

Classified as
o & ©
A P C Q o € e R o
Q&Q‘q Q&Q‘q o¢ C\B‘b\ Q,%"C g(‘cg \\\'&0\ RO o q&@s RESINC «ge?g‘ o

BBRv1 100% 0% 0% 0% 0% 0%
BBRv2 6% 94% 0% 0% 0% 0%
BIC 0% 0% 100% 0% 0% 0%
CUBIC 0% 0% 5% 95% 0% 0%
HSTCP 0% 0% 0% 0% 98% 2%
HTCP 0% 0% 0% 0% 0%
Tllinois 0% 0% 0% 0% 0% 0%
New Reno 0% 0% 0% 0% 0% 0%
Scalable 0% 0% 0% 0% 0% 0%

Vegas 0% 0% 0% 0% 0% 0%
Veno 0% 0% 0% 0% 0% 0%
Westwood 0% 0% 0% 0% 0% 0%
YeAH 0% 0% 0% 0% 0% 0%

100%

0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0%
88% 8% 0% 4% 0% 0% 0% 0%
0% 100% 0% 0% 0% 0% 0% 0%
0% 8% 92% 0% 0% 0% 0% 0%
0% 2% 0% 98% 0% 0% 0% 0%
0% 0% 0% 0% 100% 0% 0% 0%
0% 8% 0% 0% 0% 92% 0% 0%
0% 0% 0% 0% 0% 0% 100% 0%

3.5 Supporting Web Browsers & Multiple Flows
using Selenium

One of Nebby's advantages over previous tools is that it can work
with a large range of applications. In addition to TCP measurements
using wget and QUIC measurements using a quiche client, Nebby
can also classify a flow generated by a live web browser. We used a
simple Selenium[15] wrapper written in about 25 lines of Python
code to launch connections and stream dynamic web content like
video via a Google Chrome browser.

This allows us to capture the same sequence of flows an ap-
plication usually generates while accessing the Internet. Since a
browser can launch multiple concurrent connections, we ran a
modified version of Nebby with our Selenium client that creates a
separate bottleneck queue to isolate each connection so that each
flow can be classified separately. Our clients also generate a HAR
(HTTP Archive) file after every connection to allow us to correlate
individual flows to individual asset requests.

4 EVALUATION

In this section, we evaluate Nebby’s accuracy and present our re-
sults for measurements over wget (TCP), quiche (QUIC), and a
selenium web browser (TCP). All measurements were done from
five viewpoints (AWS data centers) around the world, namely Ohio,
Paris, Mumbai, Singapore, and Sao Paulo. All traces, unless speci-
fied, were collected between June 2023 and October 2023. Nebby was
implemented in 100 lines of Bash and 900 lines of Python. Nebby is
open-source and available on Github [14].

4.1 Measurement Accuracy and Usability

In order to determine the accuracy of our classifier, we set up
controlled web servers on the AWS cloud in 5 regions around the
world: Ohio, Paris, Mumbai, Singapore, and Sao Paulo. Each of
these control servers was configured to run all the CCAs variants
available in the Linux kernel v5.18. We then used Nebby (running
locally on a machine in the lab) to measure and classify each of
these web servers 10 times per congestion control algorithm. We
then reversed the configuration, with the test server run locally
and Nebby making measurements from the AWS instances - giving
us a total of 100 trials per congestion control algorithm. These

measurements were then classified using our classifier and the
resulting classification accuracy is shown in Table 3. We achieved
an average accuracy of 96.7%. The level of accuracy is comparable to
Gordon [50], except that Nebby can achieve slightly better accuracy
for CUBIC and BBR. While both Gordon and Nebby use shape-
based classifiers, Gordon’s measurements are much more coarse-
grained (one data point per RTT) compared to Nebby (one data
point per packet). As a result, Nebby can distinguish between all
the variants in the Linux kernel, unlike Gordon, which was not
able to distinguish between some pairs of TCP variants like Veno
and Vegas [19]. As discussed in §2.1, this is because BiF is a better
metric than the cwnd metric used by Gordon.

In terms of usability, in 2023, Gordon was able to identify CCAs
for only 4% of Alexa Top 20k websites when measured from the
Singapore region. This is because it creates traffic patterns deemed
hostile by websites (discussed in §2.1). Nebby on the other hand
identified ~78% of Alexa Top 20k websites when measured from
the Singapore region (Table 4).

4.2 Results for Alexa Top 20k Websites

To understand how the Internet’s congestion control landscape has

evolved since our previous measurement study done in 2019 [49],

we used Nebby to identify the CCA variants for the Alexa Top 20,000

websites from the 5 aforementioned viewpoints (Ohio, Paris, Mum-

bai, Singapore, and Sao Paulo). These measurements were made
using a wget client over TCP. We crawled all the target websites for
the largest web pages we could find to record the longest possible

measurement traces. We present our results in Table 4.

By comparing our results to those from [49], we make the fol-
lowing observations:

(1) Different deployments across regions. In 2019, we observed
that websites deployed the same CCAs in all 5 regions [49]. Our
latest measurements using Nebby suggest that this is no longer
the case. From Table 4, it is clear that some websites deploy
variants like CUBIC, BBR, and Reno differently in different
regions. In particular, we found that 13.6% of the websites were
deploying different variants in different regions. About half of
these websites (7% of the total) were electing to use CUBIC
in Mumbai and/or Sao Paulo while running BBR in all other
regions. An example of one such website is amazon . com which

143

Keeping an Eye on Congestion Control in the Wild with Nebby

KBytes in flight

~

=

=

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Table 4: Distribution of CCA variants among Alexa Top 20k websites measured from different viewpoints by Nebby.

Variant Ohio Paris Mumbai Singapore Sao Paulo
Websites Share Websites Share Websites Share Websites Share Websites Share
BBRv1 2,594 13% 1,900 9.5% 1,635 8% 2,541 12.7% 1,280 6.4%
BBRv2 515 2.6% 373 1.9% 12 0.1% 251 1.3% 0 0%
BIC 712 3.5% 807 4% 837 4.2% 402 2% 227 1.1%
CUBIC 8,202 41% 8,406 42% 8,822 441 8,673 43.4% 6,982 34.9%
HSTCP 0 0% 0 0% 0 0% 0 0% 0 0%
HTCP 583 2.9% 370 1.9% 522 2.6% 421 2.1% 363 1.8%
Illinois 721 3.6% 684 3.4% 1,121 5.6% 625 3.1% 229 1.1%
New Reno 1,840 9.2% 1,509 7.5% 3,032 15.2% 2,093 10.5% 2,683 13.5%
Vegas 878 4.4% 421 2.1% 301 1.5% 526 2.6% 511 2.5%
Veno 112 0.6% 382 1.9% 52 0.3% 21 0.1% 11 0.1%
Westwood 201 1% 170 0.9% 0 0% 0 0% 0 0%
Scalable 18 0.1% 0 0% 0 0% 6 0% 0 0%
YeAh 123 0.6% 89 0.4% 64 0.3% 0 0% 112 0.6%
Unknown 3,501 17.5% 4,889 24.4% 3,602 18.1% 4,441 22.2% 7,602 38%
Unresponsive 0 0% 0 0% 0 0% 0 0% 0 0%
Total 20,000 100% 20,000 100% 20,000 100% 20,000 100% 20,000 100%
o 40 Table 5: CCAs deployed by most popular websites on the
= Internet by traffic-share.
20 230 Websites Traffic share [56] CCA
<20 google domains 13.85% BBRv3
10 :;10 netflix.com 13.74% Reno
¥ facebook . com 6.45% CUBIC
00 S Ys so s e 1is 0 5 z T 5 apple.com 4.59% AkamaiCC
) ' Time (s) ' ' Time (s) disneyplus.com 4.49% CUBIC
womomI) b cumo e
Figure 8: Traces for amazon.com in different regions. primevideo. com 2.67% BBRv2
was served in all regions using BBRv1 except Mumbai, where hulu. com 2.44% AkamaiCC
we found it being served using CUBIC (see Figure 8). 40
Websites deploying New Reno. We had earlier in 2019 re- £30 £30
ported that New Reno was deployed on only 0.8% of websites. - -
In contrast, Nebby found New Reno to be deployed on some g g
11.1% of the 20,000 surveyed websites. On further investigation, g g
we found that among these 11% of websites, 5% were previously 0 of
unclassified (‘Unknown’) and 4% were not present in the earlier 0 Time (5)5 0 Time (5)5
list o.f Alexa top 20,000 sites. A small number (1%) were earlier (a) google. com (b) BBRv3
classified by Gordon as Vegas. (Jun 2023) (Aug 2023)

Adoption of BBRv1. We found a slight dip in the absolute
number of websites that choose to deploy BBR in the Alexa
Top 20,000 websites. Even in Ohio, which is the region with the
largest deployment of BBR, the number of websites using BBR
has dropped from 18% in 2019 to 15.5% in 2023. That said, it
should be noted that the Alexa list [38] has evolved significantly
since the last measurement study. Overall, we only share 52%
of the same measured websites in 2019. Among the common
websites, 12% of them (6% of the total) have migrated from
using BBR in 2019 to CUBIC in 2023. A large number of these
websites (9%, about 4.5% of the total) are hosted by Cloudflare.
Some of these notable websites are bbc.com and wikihow.com.
It remains true that most websites choosing to deploy BBR
tend to serve video workloads, adult content, or large files (for
example, mega.nz). We summarize the CCAs deployed by some
of these ‘heavy-hitter’ websites in Table 5.

Slow adoption of BBRv2. Even though Google itself report-
edly switched from BBRv1 to BBRv2 back in 2020, the adoption

144

Figure 9: Catching the deployment of BBRv3 in the wild.

of BBRv2 seems to be slow. Only about 5% of the websites we
identified as deploying BBRv2 were sites that upgraded from
BBRv1 back in 2019. This suggests that most websites that de-
ploy BBRv2 today are new adopters of BBR. Some examples
of these new adopters are rakuten.com and primevideo.com,
both of which deployed CUBIC in 2019. More than 98% of the
websites that were deploying BBRv1 in 2019 and were also mea-
sured by Nebby are either still deploying BBRv1 (86%), or have
switched to CUBIC (12%).

Catching the deployment of BBRv3. During our measurements

in June 2023 we noticed that all of the google domains and youtube . com

were deploying a version of BBR that was neither BBRv1 or BBRv2.

We
202

hypothesized that what Nebby had actually measured in June
3 was an early deployment of BBRv3, which was released to the

community only in August 2023 (See Figure 9). We confirmed this
finding with Google [32].

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

— 50ms — 50ms

800001 _ 100ms

60000

—— 100ms

60000

Mishra et al.

— 50ms
— 100ms

2 ¥ 2 —— 100ms £ 60000
o o o o
260000 g 240000 g
< £ 40000 < < 40000
g 40000 g 2 2
g] £ 20000]
320000 320000 & 520000

0 0 0 0

10 20 30 10 20 30 10 20 30 20 40 60
Time (s) Time (s) Time (s) Time (s)

(a) apple.com (b) hulu.com

(c) tiktok.com (d) pornhub. com

Figure 10: Traces for websites deploying AkamaiCC.

4.3 Extending Nebby to identify new CCAs

In 2019, we found that Akamai deployed an undocumented variant
that we referred to as AkamaiCC [50]. In 2023, we confirmed that
websites hosted by Akamai continue to deploy an undocumented
variant. Two of these sites were Apple and Hulu and the corre-
sponding traces are shown in Figures 10a and 10b. As shown in
these figures, the defining characteristic of this undocumented CCA
is that it would typically send data at some fixed rate for several sec-
onds before backing off. This backoff was not triggered by dropped
packets or any bandwidth limits. The fixed send rate did not seem
to be determined by either the BDP or the RTT. This behavior is
different from what we observed in 2019, where cwnd was found to
be proportional to the BDP. It is therefore likely that AkamaiCC has
evolved since the last measurement study in 2019, or Akamai might
have deployed a CCA different from the one that was deployed in
2019.

Given these observations, we wrote a pluggable classifier for
Nebby that detected if a flow backed off in intervals between 10 to
20s, and maintained BiF at a steady level between these back-offs.
Since we do not have the ground truth for AkamaiCC, the classi-
fication parameters were determined from traces obtained from
10 known Akamai-hosted websites that Nebby originally classified
as ‘Unknown’. We add this new AkamaiCC classifier to our origi-
nal set of 2 classifiers (loss-based and BBR). By running this new
classifier over our full data set, the CCAs for all the known Akamai-
hosted websites (approximately 6%) were identified as AkamaiCC.
This demonstrates that Nebby is easily extensible to new CCAs
beyond the known and documented CCAs. In addition to these
Akamai-hosted websites, we also found another 1% of websites
(that were not hosted by Akamai) that deployed an AkamaiCC-like
variant. Two such examples (TikTok and Pornhub®) are shown in
Figures 10c and 10d.

4.4 CCA Implementations in QUIC Stacks

QUIC [39] is quickly gaining popularity on the Internet and is
set to become the standard transport with HTTP3. Meta already
supports 75% of its traffic using its mvfst QUIC stack [42]. We had
earlier shown that the implementations of standard TCP variants in
existing QUIC stacks can be quite different from that in the current
Linux kernel [47].

We investigated 11 QUIC stacks with a total of 22 different im-
plementations of CUBIC, Reno, and BBR (See Appendix C for more
details). Since QUIC implementations can behave significantly dif-
ferently from their kernel counterparts, we re-evaluated the accu-
racy of our classifier for all these QUIC CCA implementations.

3No pornographic material was watched in the course of this research. All data access
was done with a headless browser.

145

In Table 7, we produce the confusion matrix for the classification
of the CCA implementations in these QUIC stacks. In general, our
classifier works very well for most of the CCA implementations in
the investigated QUIC stacks.

We investigated if Nebby was able to identify the CCA variants
implemented by the existing QUIC stacks accurately by measuring
Nebby’s accuracy for the 22 CCA implementations of CUBIC, BBR,
and Reno for 11 open-sourced QUIC stacks. We found that Nebby
achieved an average accuracy of 92.8%. Our accuracy is not as high
for quiche CUBIC (78%), xquic Reno (80%), and mvfst BBR (86%),
but this is hardly surprising since these variants had earlier been
identified to be non-conformant QUIC CCA implementations [47].
By non-conformant, we mean that their behavior deviates signif-
icantly from their respective kernel CCA implementations. We
added the Conformance [47] for all the benchmarked QUIC CCA
implementations as an extra column in Table 7 for reference.

To investigate the CCAs deployed by websites that support QUIC,
we repeated measurements of the Alexa Top 20,000 website by send-
ing requests using quiche’s QUIC client using Nebby. We found
that only 8.9% of the 20,000 sites responded to QUIC requests. Most
of these websites supporting QUIC were hosted by Cloudflare or
were Facebook domains. All these websites also deployed the same
congestion control algorithms they deployed over TCP. Our results
are summarized in Table 6. We found no evidence of undocumented
variants being deployed on QUIC stacks. When we studied the
traces for the websites that were classified as ‘Unknown,” we found
that the reason why they could not be classified was because of
noisy measurements.

4.5 Video Measurements with Selenium

In addition to measuring websites over wget and QUIC, we also mea-
sured websites using a standard web browser as described in §3.5.
One of Nebby’s advantages over its predecessors is that it allows us
to study streaming and interactive applications. We measured pop-
ular websites while streaming video on demand (VOD), live video,
audio, and while being on a video call. Since such applications tend
to open multiple concurrent connections, we use a modified version
of Nebby that assigns separate bottleneck queues to each flow. We
summarize our observations below (see Table 8).

BBR is the preferred CCA for video traffic. To investigate if
certain CCAs were preferred for certain asset types, we identified
which flows were serving which elements in the webpage and
correlated their CCAs with them. We found that most audio and
video streaming websites like Primevideo, AppleTV, Spotify, Apple
Music, YouTube, Douyin, Bilibili, Twitch, HBO, and Hotstar used
some version of BBR to stream audio and video. However, there
were a few exceptions to this rule, namely Netflix (New Reno),
TikTok and Hulu (AkamaiCC), and Disney+ and Jiocinema (CUBIC).

Keeping an Eye on Congestion Control in the Wild with Nebby

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Table 6: Distribution of QUIC CCA variants as measured from different viewpoints on the Internet.

Variant Ohio Paris Mumbai Singapore Sao Paulo
Websites Share Websites Share Websites Share Websites Share Websites Share

CUBIC 622 3.1% 829 4.1% 927 4.6% 796 4% 403 2%

BBR 1,036 5.2% 703 3.5% 197 1% 268 1.3% 479 2.4%

BBRv2 0 0% 0 0% 0 0% 0 0% 0 0%

New Reno 25 0.1% 10 0% 11 0% 18 0.1% 10 0%

Unknown 101 0.5% 242 1.2% 847 4.2% 702 3.5% 892 4.5%

Unresponsive 18,216 91.1% 18,216 91.1% 18,018 90.1% 18,216 91.1% 18,216 91.1%

Total 20,000 100% 20,000 100% 20,000 100% 20,000 100% 20,000 100%

Table 7: Confusion Matrix for QUIC CCA variants.
Classified as \
N 2 C 51

Organization Variant ?)?’@1 QS’QS ¥ C\S%X Y\%«’ Y\QCQ \\‘00 $€§ s %@\%Q&% e Qle%& Y\ 000 s
Alibaba xquic CUBIC 0% 0% 0% 88% 0% 0% 0% 0% 0% 0% 0% 0% 0% 12% 0.55
AWS s2n-quic CUBIC 0% 0% 3% 92% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 0.76
Cloudflare quiche CUBIC 0% 0% 12% 78% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 0.08
Go quicgo CUBIC 0% 0% 12% 84% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 0.87
Google chromium CUBIC 0% 0% 6% 94% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.6
H20 quicly CUBIC 0% 0% 0% 82% 0% 0% 0% 0% 0% 0% 0% 0% 0% 18% 0.68
LiteSpeed lsquic CUBIC 0% 0% 4% 92% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 0.95
Meta mvfst CUBIC 0% 0% 0% 100z 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.9
Microsoft msquic CUBIC 0% 0% 0% 98% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0.7
Mozilla neqo CUBIC 0% 0% 7% 88% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 0
Rust quinn CUBIC 0% 0% 0% 90% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 0.7
Alibaba xquic BBR 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.15
Google chromium BBR 100z 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.7
LiteSpeed 1squic BBR 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.59
Meta mvfst BBR 86% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 14% O
Alibaba xquic Reno 0% 0% 0% 0% 0% 0% 0% 80% 0% 0% 0% 0% 0% 20% 0.38
Cloudflare quiche Reno 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0.8
Go quicgo Reno 0% 0% 0% 0% 0% 0% 0% 98% 0% 0% 0% 0% 0% 2% 0.92
H20 quicly Reno 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0.8
Meta mvfst Reno 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0.94
Mozilla neqo Reno 0% 0% 0% 0% 0% 0% 0% 92% 0% 0% 0% 0% 0% 8% 0.62
Rust quinn Reno 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0.96

A website can use different CCAs for different flows. We
also found instances where websites were using different CCAs to
deliver different assets. For example, we observed AppleTV, Twitch,
and HBO use BBR to stream video and CUBIC to load static assets
like banner ads. It is likely this variation exists because different
CDNs cache these assets. Simple websites with only static web
content always had all their data delivered by only one CCA.

Inter-flow interaction for the same websites. It is well known
that CUBIC and BBR flows do not mix well [51, 61]. Therefore,
when we saw some websites using a combination of CUBIC and
BBR flows to deliver their web pages, we were curious to see how
these flows would interact with each other. For these webpages,
we ran Nebby in its default single bottleneck setting to see how
these flows would interact. Interestingly, for AppleTV, we found
CUBIC and BBR flows interacting and negatively impacting each
other’s performance. We often observed that a CUBIC flow deliv-
ering a banner ad on appletv.com could cause degradation to the

long-running BBR flow that was delivering video chunks for the
video player. While this particular interaction might be an artifact
of Nebby’s constraint bandwidth setting, this is enough evidence
that developers need to be careful about how they deploy CCAs to
avoid causing performance issues inadvertently.

5 DISCUSSION & FUTURE WORK

Our measurement results have raised many questions on the future
of the Internet’s congestion control landscape. Our methodology
also has scope for improvement on many fronts. In this section, we
discuss these questions and future work.

Internet Evolution. The original motivation for this study was
the question: how has the congestion control environment of the Inter-
net changed? Given the rapid adoption of BBR in 3 years since it was
introduced in 2016, the burning question in 2019 was whether BBR
would eventually replace CUBIC as the dominant congestion con-
trol on the Internet. In 2022, we modeled the interactions between

146

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia Mishra et al.
Table 8: CCAs serving popular web services running on a Selenium client.
Website Region Activity Connections Max Concurrent CCAs for CCAs for
of popularity Connections Audio/Video Traffic Static Assets
Netflix Global VOD 28 5 New Reno'52] New Reno, CUBIC
Primevideo Global VOD 12 6 BBR BBR
AppleTV Global ~ VOD 16 6 BBR BBR, CUBIC
Disney+ Global VOD 20 6 CUBIC CUBIC
HBO Global VOD 10 4 BBR CUBIC
Tiktok Global VOD 21 4 AkamaiCC AkamaiCC, CUBIC
YouTube Global VOD, live video 81 6 BBRv3132] BBR32]
Twitch Global VOD, live video 118 6 BBR CUBIC
Spotify Global VOD, streaming audio 8 5 BBR26] BBR26]
Apple Music Global streaming audio 16 6 BBR BBR, AkamaiCC
Zoom Global video call 39 6 BBR CUBIC
Meet Global video call 60 5 BBRv3132] BBR32]
Hulu Us VOD 41 6 AkamaiCC AkamaiCC
Douyin China VOD 5 6 BBR BBR
Bilibili China VOD 10 3 BBR BBR
Hotstar India VOD 12 5 BBR BBR
Jiocinema India VOD 12 6 CUBIC CUBIC

+ Verified through personal correspondence or public tech blog posts.

CUBIC and BBR and hypothesized that the adoption of BBR would
likely slow down because as the proportion of flows switch over
to BBR, the advantage of doing so will start to drop [51]. Beyond a
critical mass, CUBIC will end up outperforming BBR when it is in
the minority. Our latest study suggests that we might have been on
to something since the proportion of BBR sites has hardly changed
since 2019, despite the rapid initial adoption.

Different Strokes for Different Applications, Different Lo-
calities. One of the surprising findings of our latest measurement
study is that the preferences for CCAs is not uniform, i.e. providers
do not seem to have a preference of one CCA over the rest. In fact,
we have found instances where a provider can deploy different
CCAs under different contexts. For example, Apple deploys BBR
for videos and CUBIC for ads in the same(!) session (see §4.5).

QUIC CCA variants. It has been shown that while QUIC stacks
implement standard CCA variants, many of these variants behave
somewhat differently from standard kernel implementations [47].
The results of our current study seem to suggest that these non-
conformant variants can be classified successfully even though
they do not behave exactly like standard kernel implementations.
This trend might not continue to hold in the future and the char-
acterization of the current congestion control landscape will be
increasingly complex. In this measurement study, we have focused
solely on identifying the congestion control variant used and we
used our classifier that was trained on the kernel implementations.
It is plausible for us to improve the accuracy of our classifier by
using the traces from the QUIC implementations as well.

Classifying CCAs beyond those in the Linux kernel. As dis-
cussed, Nebby can be extended to more CCAs as they are deployed
on the Internet. For example, Meta implements Copa [17] in their
QUIC stack. As an extension to Nebby's classifier, we wrote a simple
Copa classifier that achieved an accuracy of 88% (See Appendix D
for more details). When we ran this classifier for our Alexa Top 20k
traces, none of the existing websites were identified to be running
Copa, including Facebook domains. This is not surprising, since

147

Copa is reported to be deployed by Meta only at the uplink [30]. We
implemented a rudimentary classifier for PCC Vivace [25] as well,
which had an accuracy of 58% over the Internet (See Appendix D).
We did not find any websites running PCC Vivace on the Internet
either.

Evolving definition of Fairness. The degree of heterogene-
ity in the Internet’s congestion control landscape as observed by
Nebby (and Gordon before it) does not arise in a vacuum. This
heterogeneity is likely caused by the heterogeneous mix of applica-
tions that share the Internet. This is evident from different assets
preferring different kinds of CCAs (See §4.5). BBR is often critiqued
for not playing fair with CUBIC [37, 51, 61]. However, the very fact
they are still coexisting on the Internet means that this critique
(which is mostly based on throughput) is not deserved and that our
definitions of fairness and deployability need to evolve [60].

6 CONCLUSION

In the early 2000s, measurement studies on the distribution of con-
gestion control algorithms were generally conducted roughly every
10 years. This was sufficient because the evolution of congestion
control algorithms was relatively slow. Today, we are in an era of
rapid change where new CCAs are developed every year.

With Nebby, researchers finally have a reliable and extensible
way to keep abreast of the evolution of the Internet congestion
control landscape.

Ethics statement: This work does not raise any ethical issues.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers and our shepherd
Costin Raiciu for their valuable feedback and helpful comments.
This work was supported by the Singapore Ministry of Education
grant MOE-T2EP20222-0006 and the NUS-AWS Cloud Credits for
Research Grant.

Keeping an Eye on Congestion Control in the Wild with Nebby

REFERENCES

(1]
(2]

[12]
[13]
[14
[15]
[16]

[17

[18]

[19

[20]

[21

[22]

[23]

[24

[25

[26]

[
)

[28]

[29

[30

[31

[32]
[33

[34

2022. Alibaba’s QUIC implementation, xquic. (2022). https://github.com/alibaba/
xquic

2022. Amazon Web Services’s QUIC implementation, s2n-quic. (2022). https:
//github.com/aws/s2n-quic

2022. Cloudflare’s QUIC implementation, quiche. (2022). https://github.com/
cloudflare/quiche

2022. Facebook’s QUIC implementation, mvfst. (2022). https://github.com/
facebookincubator/mvfst

2022. Google’s QUIC implementation, chromium. (2022). https://www.chromium.
org/quic/playing-with-quic

2022. Go’s QUIC implementation, quic-go.
lucas-clemente/quic-go

2022. H20’s QUIC implementation, quicly. (2022). https://github.com/h20/quicly
2022. LiteSpeed’s QUIC implementation, Isquic. (2022). https://github.com/
litespeedtech/Isquic

2022. Microsoft’s QUIC implementation, msquic. (2022). https://github.com/
microsoft/msquic

2022. Mozilla’s QUIC implementation, neqo. (2022). https://github.com/mozilla/
neqo

2022. Rust’s QUIC implementation, quinn. (2022). https://github.com/quinn-rs/
quinn

2023. Alexa Top Websites - Last Save. (2023). https://www.expireddomains.net/
alexa- top-websites/

2023. BBRv3: Algorithm Bug Fixes and Public Internet Deployment. (2023).
http://tinyurl.com/bbrv3ietf

2024. Nebby. (2024). www.github.com/NUS-SNL/Nebby

2024. Selenium. (2024). https://www.selenium.dev

Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing router
buffers. ACM SIGCOMM CCR 34, 4 (2004).

Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Conges-
tion Control for the Internet. In Proceedings of NSDIL

Andrea Baiocchi, Angelo P Castellani, and Francesco Vacirca. 2007. YeAH-TCP:
yet another highspeed TCP. In Proceedings of PFLDnet.

Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. 1994. TCP Ve-
gas: New techniques for congestion detection and avoidance. In Proceedings of
SIGCOMM.

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2017. BBR: Congestion-based Congestion Control. CACM 60, 2
(2017), 58-66.

Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, and Van Jacobson. 2017.
BBR Congestion Control. IETF Draft. (2017). https://datatracker.ietf.org/doc/
html/draft-cardwell-iccrg-bbr-congestion-control-00

Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian Swett, Victor Vasiliev,
Priyaranjan Jha, Yousuk Seung, Matt Mathis, and Van Jacobson. 2019. BBR
v2 - A Model-based Congestion Control. ICCRG at IETF 104. (2019). https:
//bit.ly/2HgGOuQ

Claudio Casetti, Mario Gerla, Saverio Mascolo, Medy Y Sanadidi, and Ren Wang.
2002. TCP Westwood: end-to-end congestion control for wired/wireless networks.
Wireless Networks 8, 5 (2002), 467-479.

Xiaoyu Chen, Shugong Xu, Xudong Chen, Shan Cao, Shunqing Zhang, and
Yanzan Sun. 2019. Passive TCP identification for wired and wireless networks: A
long-short term memory approach. In Proceedings of IWCMC.

Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. 2018. PCC Vivace: Online-Learning Congestion Control.
In Proceedings of NSDIL

Eirini Kakogianni Erik Carlsson. 2018. Smoother Streaming with BBR. (2018).
https://engineering.atspotify.com/2018/08/smoother-streaming-with-bbr/
Margarida Ferreira, Akshay Narayan, Inés Lynce, Ruben Martins, and Justine
Sherry. 2021. Counterfeiting Congestion Control Algorithms. In Proceedings of
Hotnets.

Sally Floyd. 2003. HighSpeed TCP for Large Congestion Windows. RFC 3649.
(2003).

Cheng Peng Fu and S. C. Liew. 2006. TCP Veno: TCP Enhancement for Transmis-
sion over Wireless Access Networks. IEEE JSAC 21, 2 (2006), 216-228.

Nitin Garg. 2019. Engineering at Meta: Evaluating COPA congestion control for
improved video performance. (2019). https://engineering.fb.com/2019/11/17/
video-engineering/copa/

Sishuai Gong, Usama Naseer, and Theophilus A Benson. 2020. Inspector Gadget:
A Framework for Inferring TCP Congestion Control Algorithms and Protocol
Configurations.. In Network Traffic Measurement and Analysis Conference.
Google. 2023. Personal Correspondance. (2023).

Google Cloud Blogs 2017. TCP BBR congestion control comes to GCP: your
Internet just got faster. (2017). https://bit.ly/2Hk4WLH

Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-friendly
High-speed TCP Variant. SIGOPS Operating Systems Review 42, 5 (2008), 64-74.

(2022). https://github.com/

148

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

[35

[36]

(37

[38

(39]

[40

[41]

[42]

[43

[44

[45]

[46

(47]
(48]

[49]

[62

[63

Desta Haileselassie Hagos, Paal E Engelstad, Anis Yazidi, and @ivind Kure. 2018.
General TCP state inference model from passive measurements using machine
learning techniques. IEEE Access 6 (2018), 28372-28387.

T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. 2012. The NewReno Modifica-
tion to TCP’s Fast Recovery Algorithm. (2012). https://tools.ietf.org/html/rfc6582
Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental Evaluation
of BBR Congestion Control. In Proceedings of ICNP.

Alexa Internet Inc. 2023. The Top 500 websites on the Internet. (2023). https:
//www.alexa.com/topsites

Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport, RFC 9000. (2021). https://datatracker.ietf.org/doc/html/rfc9000
Van Jacobson. 1988. Congestion Avoidance and Control. ACM SIGCOMM Com-
puter Communication Review 18, 4 (1988).

Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim Kurose, and Don
Towsley. 2004. Inferring TCP connection characteristics through passive mea-
surements. In Proceedings of INFOCOM.

Matt Joras and Yang Chi. 2020. How Facebook is bringing QUIC to
billions. (2020). https://engineering.fb.com/2020/10/21/networking-traffic/
how-facebook-is-bringing-quic-to-billions/

Tom Kelly. 2003. Scalable TCP: Improving Performance in Highspeed Wide Area
Networks. SIGCOMM CCR 33, 2 (2003), 83-91.

Douglas Leith, R Shorten, and Y Lee. 2005. H-TCP: A framework for congestion
control in high-speed and long-distance networks. In Proceedings of PFLDnet.
Shao Liu, Tamer Basar, and R. Srikant. 2006. TCP-Illinois: A Loss and Delay-
based Congestion Control Algorithm for High-speed Networks. In Proceedings of
VALUETOOLS.

Alberto Medina, Mark Allman, and Sally Floyd. 2005. Measuring the Evolution
of Transport Protocols in the Internet. SSIGCOMM CCR 35, 2 (2005), 37-52.
Ayush Mishra and Ben Leong. 2023. Containing the Cambrian Explosion in QUIC
Congestion Control. In Proceedings of IMC.

Ayush Mishra, Sherman Lim, and Ben Leong. 2022. Understanding Speciation in
QUIC Congestion Control. In Proceedings of IMC.

Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben
Leong. 2019. Gordon: Congestion Control Identification Tool. (2019). https:
//github.com/NUS-SNL/Gordon

Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben
Leong. 2019. The Great Internet TCP Congestion Control Census. In Proceedings
of SIGMETRICS.

Ayush Mishra, Wee Han Tiu, and Ben Leong. 2022. Are we heading towards a
BBR-dominant Internet?. In Proceedings of IMC.

NetFlix. 2023. Personal Correspondance. (2023).

Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP. In Proceedings of ATC.

Jitendra Padhye and Sally Floyd. 2001. On Inferring TCP Behavior. In Proceedings
of SIGCOMM.

Vern Paxson and Mark Allman. 2009. TCP Congestion Control. RFC 5681. (2009).
Canada Sandvine Inc. Waterloo, ON. 2022. The 2022 Global Internet Phenomena
Report. (2022). https://www.sandvine.com/phenomena

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. 2022. Continuous in-
network round-trip time monitoring. In Proceedings of SSIGCOMM.

Bruce Spang, Serhat Arslan, and Nick McKeown. 2022. Updating the theory of
buffer sizing. In Proceedings of SSGMETRICS.

Kun Tan, Jingmin Song, Qian Zhang, and Murad Sridharan. 2006. A compound
TCP approach for high-speed and long distance networks. In Proceedings of
INFOCOM.

Ranysha Ware, Matthew K Mukerjee, Srinivasan Seshan, and Justine Sherry. 2019.
Beyond jain’s fairness index: Setting the bar for the deployment of congestion
control algorithms. In Proceedings of Hotnets.

Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry. 2019.
Modeling BBR’s Interactions with Loss-Based Congestion Control. In Proceedings
of IMC.

Lisong Xu, K. Harfoush, and Injong Rhee. 2004. Binary increase congestion
control (BIC) for fast long-distance networks. In Proceedings of INFOCOM.

Peng Yang, Juan Shao, Wen Luo, Lisong Xu, Jitendra Deogun, and Ying Lu. 2011.
TCP Congestion Avoidance Algorithm Identification. IEEE/ACM Transactions on
Networking 22, 4 (2011), 1311-1324.

https://github.com/alibaba/xquic
https://github.com/alibaba/xquic
https://github.com/aws/s2n-quic
https://github.com/aws/s2n-quic
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://github.com/facebookincubator/mvfst
https://github.com/facebookincubator/mvfst
https://www.chromium.org/quic/playing-with-quic
https://www.chromium.org/quic/playing-with-quic
https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go
https://github.com/h2o/quicly
https://github.com/litespeedtech/lsquic
https://github.com/litespeedtech/lsquic
https://github.com/microsoft/msquic
https://github.com/microsoft/msquic
https://github.com/mozilla/neqo
https://github.com/mozilla/neqo
https://github.com/quinn-rs/quinn
https://github.com/quinn-rs/quinn
https://www.expireddomains.net/alexa-top-websites/
https://www.expireddomains.net/alexa-top-websites/
http://tinyurl.com/bbrv3ietf
www.github.com/NUS-SNL/Nebby
https://www.selenium.dev
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://bit.ly/2HgGOuQ
https://bit.ly/2HgGOuQ
https://engineering.atspotify.com/2018/08/smoother-streaming-with-bbr/
https://engineering.fb.com/2019/11/17/video-engineering/copa/
https://engineering.fb.com/2019/11/17/video-engineering/copa/
https://bit.ly/2Hk4WLH
https://tools.ietf.org/html/rfc6582
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://datatracker.ietf.org/doc/html/rfc9000
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://github.com/NUS-SNL/Gordon
https://github.com/NUS-SNL/Gordon
https://www.sandvine.com/phenomena

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Table 9: Distribution of TCP variants with Gordon [49].

TCP variant Websites Proportion 2019 [50]
CUBIC [34] 212 2.12% 30.7%
BBRv1 [20] 85 0.85% 17.75%
CTCP [59]/Illinois[45] 63 0.63% 5.74%
Reno [55]/HSTCP [28] 52 0.52% 0.80%
Other CCAs 0 0% 18.87%
Unknown 1,430 14.30% 12.16%
Short flows 6,282 62.82% 7.47%
Unresponsive 1,876 18.76% 6.51%
Total 10,000 100% 100%

Appendices are supporting material that has not been peer-
reviewed.

A REPLICATING GORDON

Among previous measurement studies, our earlier study in 2019 was
the most recent work that attempted classifying congestion control
algorithms deployed by web servers on the Internet [50]. Gordon
estimates a sender’s congestion window by counting the number
of unacknowledged packets in each RTT. To do so, Gordon makes a
connection and drops packets till it sees a retransmission. Gordon
repeats this process over hundreds of connections and then uses the
resulting cwnd traces to identify the CCA. We expected the Internet
to have evolved since Gordon’s last measurement study in 2019, so
we decided to use Gordon to classify the Alexa Top 10,000 websites.
Unfortunately, we were sorely disappointed to discover that Gordon
was only able to successfully identify 4% of our measured websites,
and among these websites, only 4 categories of TCP variants were
identified. We summarize the results in Table 9. We also reproduce
the results from [50] (2019) in the last column for easy reference.

We see a sharp increase in unclassified and unknown websites.
63% of failures were due to the flows being too short, despite us
crawling these websites for large web pages. We found that these
websites often did not serve the requested page, but an error page
instead, because Gordon’s measurement was treated as a DoS attack.
This is not surprising, since Gordon’s methodology is extremely
aggressive and was likely inferred as malicious. In summary, it
is not practical to use Gordon to classify CCAs run by websites
today. Moreover, Gordon only focuses on TCP connections and
cannot classify flows serving web browsers and other real-world
applications.

B POLYNOMIAL FITTING FOR LOSS-BASED
CONGESTION CONTROL ALGORITHMS

As mentioned in §3.4, Nebby’s classifier classifies loss-based CCAs
by matching the shape of a candidate measurement with that of
known loss-based CCAs in the Linux kernel. To do so, we express
each segment of a measurement trace as a polynomial and check if
the coefficients of the polynomials match with that of the known
loss-based CCAs.

We tested all the coefficients generated by our control tests using
the D’Agostino K2 test and the Shapiro-Wilk test to verify if these
coefficients were normally distributed for all of the target CCAs.
We used a soft-fail hypothesis, where if a CCA’s coefficients passed

149

Mishra et al.

Table 10: List of open-source QUIC stacks studied.

Organization Stack CUBIC BBR Reno
Alibaba xquic [1] v v v
Amazon Web Services s2n-quic [2] v X X
Cloudflare quiche [3] v X v
Go quicgo [6] v X v
Google chromium [5] v v X
H20 quicly [7] v X v
LiteSpeed 1squic [8] v v X
Meta mvfst [4] v v v
Microsoft msquic [9] v X X
Mozilla neqo [10] v X v
Rust quinn [11] v X v

either of the tests, they were considered to be normally distributed.
All our target CCAs passed at least one of the two tests. This allows
us to model each CCA’s coefficients as a normal distribution, and
treat each CCA’s polynomial as a multivariate random variable.

Since we can model each feature’s polynomial as a multivariate
random variable, it opens up the possibility of using a large variety
of supervised learning algorithms. We chose to use Gaussian Naive
Bayes (GNB) because it works with continuous data and does not
require mapping the data to a higher dimensional feature space (as
is the case for Support Vector Machines). We were reluctant to use
such methods as it would mean that some new feature other than
the polynomial coefficients which reflect the shape of the CCAs
would be used to make the classification. As stated earlier, we only
want to use the shape of the CCAs to classify measurements to
avoid the risk of overfitting. GNB gives us this freedom. The prior
for the GNB was set to be a discrete distribution which allows each
CCA to be chosen with equal probability.

The GNB classifier gives us a probability that a given feature can
belong to a certain CCA. In practice, we found the probabilities for
most of our features to be skewed to only one CCA. In cases where
multiple CCAs have equally high probabilities, we classify the
feature as Unknown. In general, a measurement can have multiple
features. In such cases, a measurement is classified as a known
CCA only if all features in that measurement belong to that CCA.
A measurement can also be classified as a known CCA if only some
of the features belong to that known CCA while the other features
are classified as unknown. We found no instances where features
from the same measurements matched two different CCAs.

C QUIC STACKS CHOSEN

In Table 10, we summarize the QUIC stacks we chose to benchmark
Nebby’s classifier with. These 11 QUIC stacks were chosen based
on the criteria that they were all publicly available, open source,
deployed, and implemented some congestion control algorithm.

D CLASSIFIERS FOR COPA AND PCC VIVACE

As discussed in §5, we extended Nebby’s classifier to include a
classifier for Copa [17]. This classifier identified Copa based on its
periodic oscillations around the bottleneck bandwidth that occur
every five RTTs (see Figure 11). Our classifier was able to success-
fully classify both the original UDP implementation of Copa [17]

Keeping an Eye on Congestion Control in the Wild with Nebby

. _ 201 — 100ms
< < — 50ms
o o
= £ 15
£ £
4 $ 1.0
B 5
a)
= ¥ 0.5
0.0 —
0 2 4 6 8 10
Time (s) Time (s)
(a) Copa [17] (b) mvfst Copa [4]

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

8 M — 100ms
b= £ 854
26 2
= = 8.0
c %% £
n 47 w d u u Ll
a 7.5
22 z
g — 100ms 2.5
o4 — 50ms
T T T T T T T
0 5 10 15 8.5 9.0 9.5
Time (s) Time (s)

(c) PCC Vivace [25] (d) Zoomed in view for a PCC trace.

Figure 11: BiF traces for Copa and PCC Vivace.

Table 11: Evolution of the Internet’s Congestion Control Landscape (2001-present).

Class CCA 2001 [54] 2004 [41] 2011 [63] 2019 [50] 2023, Nebby
New Reno [55] 35% (1,571) 25% (21,266) 0.8% (160) 11.1% (11,157)
Loss-based AIMD Reno [40] 21% (945) 5% (4,115) 12.5% (623) - -
Tahoe 26% (1,211) 3% (2,164) - -
CUBIC [34] 22.3% (1,115) 30.7% (6,139) 41% (41,085)
BIC [62 10.6% (531 0.9% (181 3% (2,985
Loss-based MIMD HST[CP][ZS] i 7.4% 2369; R() (0% (0;
Scalable [43] 1.4% (69) 0.2% (39) 0% (24)
Vegas [19 1.2% (58 2.8% (564) 2.6% (2,637
Delay-based AIMD Wegstw[o()(]l [23] . 2% (1(04; 0; (0; 0.4"/(:, (371;
CTCP [59 6.7% (334 ¢
Illinois[[4g] o.s%((28; STR(LIAE) 5 40 (3.380)
Delay-based MIMD Veno [29] - 0.9% (45) v 0.6% (578)
YeAH [18] 1.4% (72) 5.8% (1,162) 0.4% (388)
HTCP [44] 0.4% (18) 2.8%(560) 2.3% (2,259)
BBRv1 [21] 17.8% (3,550) 10% (9,985)
BBR G1.1 [50] 0.8% (167) -
Rate-based BBRv2 [22] . i - 1.1% (1,151)
BBRv3 - 0.2% (204)
Unclassified 17.3% (792) 53% (44,950) 4% (198) 12.2% (2,432) 16.7% (16,733)
AkamaiCC - - - 5.5% (1,103) 7.2% (7,117)
Short Flows - 26% (1,300) 7.5% (1,493) -
Unresponsive 0.7% (30) 14% (11,529) - 6.5% (1,302) -
Abnormal SS’ - 2.9% (144) - -
Total hosts 100% (4,550) 100% (84,394) 100% (5,000) 100% (10,000) 100% (100,000)

R Classified together with New Reno
V Classified together with Vegas
C CTCP has been deprecated in Windows

" Websites identified by CAAI as having Abnormal Slow Starts

as well as mvfst’s implementation [4] with an accuracy of 88%.
Interestingly, mvfst Copa’s oscillations were less visible at higher
RTTs, even though in theory Nebby should be able to view a larger
portion of Copa’s BiF.

We also wrote a classifier for PCC Vivace [25], which proved to
be more challenging. Vivace is an online optimization algorithm
that periodically probes above and below the receive rate to see if
it can improve its utility. These probes are relatively small, but we
can see in the 100 ms delay profile shown in Figure 11d that Nebby
is able to observe the resulting oscillations. However, our classifier
could only identify these steps in the BiF only about half the time,
perhaps because the variations in the BiF are relatively small. As a
result, our PCC Vivace classifier’s accuracy suffered and was about
58%. We believe that with further study;, it is certainly possible to
develop a more accurate classifier for PCC Vivace and we leave this
as future work.

150

E SUMMARY OF INTERNET CCA EVOLUTION
(2001-PRESENT)

In Table 11, we add the results for our latest measurement study
to the data from our earlier measurement study in 2019 [50]. We
note that since some websites deploy different CCAs in different
regions, we sum the results from all the regions to compare our
latest results to previous studies which were not region-specific.
Because we did not have access to the implementation of BBRv3,
we were not able to tune our BBR classifier for BBRv3. Nevertheless,
it is clear that while the CCA deployed by Google websites were
similar to BBR, they were not BBRv1 or BBRv2. We inferred that
they must be BBRv3 (0.2%).

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Why CCA Identification is Hard

	3 Methodology
	3.1 Estimating Bytes in Flight (BiF)
	3.2 Handling QUIC packets
	3.3 Minimal Set of Network Profiles
	3.4 Designing an Extensible Classifier
	3.5 Supporting Web Browsers & Multiple Flows using Selenium

	4 Evaluation
	4.1 Measurement Accuracy and Usability
	4.2 Results for Alexa Top 20k Websites
	4.3 Extending Nebby to identify new CCAs
	4.4 CCA Implementations in QUIC Stacks
	4.5 Video Measurements with Selenium

	5 Discussion & Future Work
	6 Conclusion
	References
	A Replicating Gordon
	B Polynomial fitting for loss-based Congestion Control Algorithms
	C QUIC Stacks Chosen
	D Classifiers for Copa and PCC Vivace
	E Summary of Internet CCA Evolution (2001–present)

