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Abstract

The Internet hosts a diverse mix of congestion control algo-
rithms (CCAs) optimized for specific throughput-delay trade-
offs. However, traditional queuing disciplines and AQMs
struggle to manage this heterogeneity and often lead to unfair-
ness and suboptimal performance. In this paper, we explore
isolation techniques that can allow competing CCAs to make
their desired throughput-delay trade-offs independent of who
they compete with. More specifically, we motivate Approx-
imate Performance Isolation between competing flows by
grouping flows with similar desired throughput-delay trade-
offs in the same queue. We realize these goals via Santa, a
new practical and scalable multi-queue AQM built on the
principles of approximate performance isolation. Santa infers
each flow’s throughput-delay preferences by comparing their
throughput shares, and shuffles aggressive ("naughty") and
passive ("nice") flows into appropriate queues over time. We
also prototype Santa on a programmable switch to demon-
strate that it is practical, scalable, and can approximate the
isolation benefits of Fair Queuing (FQ) with only a small
number of queues.

1 Introduction

Today’s Internet needs to support a diverse range of applica-
tions with different performance requirements. For example,
an online game is typically much more delay-sensitive than
a file transfer, which can tolerate higher delays in exchange
for greater bandwidth. We expect application developers to
use congestion control algorithms (CCAs) that optimize for
their desired throughput-delay trade-offs. Thus, the CCA de-
ployed on a website is often highly correlated with the content
it serves. BBR is currently the most popular CCA for web-
sites serving video traffic [38]. More recent studies have even
found that websites can run different CCAs for serving differ-
ent kinds of assets on the same webpage [37].

However, since different CCAs are optimized to make dif-
ferent throughput-delay trade-offs, they often interact poorly
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when competing with each other under certain conditions.
This issue can be particularly pronounced in the interactions
between CUBIC and BBR, which happen to be the two most
popular CCAs on the Internet [37]. BBR is designed to oper-
ate near the Kleinrock point to minimize latency [11], while
CUBIC is a buffer-filler by design to maximize throughput.
However, when BBR and CUBIC flows compete in a deep
buffer, not only are they unfair, but the BBR flow also ends
up suffering from high latency [52].

A natural question arises: how do we allow CCAs with
contrasting requirements, like BBR and CUBIC, to play well
together? In other words, how do we allow BBR to achieve
low latency and CUBIC to achieve high throughput when
sharing the same bottleneck link?

Existing queuing disciplines and AQMs are not designed to
support a heterogeneous mix of CCAs and provide isolation
between different flows with different desired throughput-
delay trade-offs. While flow-level isolation can be achieved
with Fair Queuing (FQ) [16] by providing each flow with its
own queue, this is impractical at Internet-scale [31]. There
have been proposals for AQMs that attempt to incorporate a
flow’s preferences [24], but these often require explicit noti-
fication mechanisms and expect the end hosts to be honest
about their preferences.

We show that CCAs with different desired throughput-
delay trade-offs competing with each other can be a source
of inefficiency in a network (§2.1), but these inefficiencies
can be avoided if flows with different operating points are iso-
lated from each other (§2.2). We hence explore practical and
scalable ways to achieve this performance isolation between
flows without relying on fair queuing. More specifically, we
present a way to achieve Approximate Performance Isola-
tion by placing flows with similar desired throughput-delay
trade-offs in the same queue(§2.3)

As a proof of concept, we present Santa, a novel, practical,
and scalable multi-queue AQM that is built on the principles
of approximate performance isolation (§4). Santa assigns
flows to different queues based on their desired throughput-
delay trade-offs. Santa converges to an appropriate queue



assignment by comparing the bandwidth share of a flow com-
pared to the other flows in its current queue over the duration
of a round. Flows that receive significantly higher or lower
bandwidth than the fair share are called the naughty and nice
flows respectively, and are shuffled between queues between
rounds. By using the relative performance of flows, Santa is
able to distill them across queues according to their desired
throughput-delay trade-offs — thereby achieving approximate
performance isolation.

We implement Santa on a programmable Intel Tofino
switch to demonstrate that it is practical (§5) and show that
we can achieve approximate performance isolation scalably
with a small number of queues (§6).

In summary, Santa allows different congestion control al-
gorithms to make their respective trade-offs independently,
without being unfairly influenced by competing flows. By pro-
viding each CCA with the flexibility to maintain its desired
operating point—whether it be maximizing throughput, mini-
mizing latency, or avoiding buffer overflows—Santa aims to
enable CCAs to coexist in a more harmonious and efficient
manner. In particular, we believe that by decoupling the per-
formance of different CCAs from their inter-dependencies,
Santa could mitigate issues of unfairness, promote stability,
and better accommodate the growing diversity of CCAs de-
ployed in modern networks.

2 Background and Motivation

While traditional congestion control algorithms (CCAs) were
designed with the simple goal of utilizing the bottleneck
bandwidth and preventing a congestion collapse [14, 26],
most CCAs that run on the Internet today are more nuanced.
The congestion control space is populated with numerous
variants designed to achieve different trade-offs on the net-
work [6,7,11,20,22,43]. In this section, we will present an
abstract view of the network as a trade-off space and illustrate
how different CCAs explore this trade-off space differently.
If viewed as a black box, a bottleneck link in a network can
impact the packets sent on it under the following constraints:

1. Bandwidth [0,C]: It can regulate how quickly the pack-
ets are forwarded. This is bounded by the bottleneck link
capacity C.

2. Delay [RT T,in, RT Tnyx]: On top of the per-packet ser-
vice time(#), it can also impose additional delay on
these packets before forwarding them. Typically, this
delay cannot be less than the propagation delay RT T,
of the network and larger than the maximum queuing
delay determined by the size of the buffers on the path
(RT Tnax = RT Tynin + &)-

3. Drops [0, 1]: Finally, the network can also decide not
to forward a packet and drop it. We can model drops
with a probability between 0 and 1, because the queuing
discipline could be non-deterministic like RED [18].
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Figure 1: All networks can be thought of as a trade-off space. This
space can be constrained by both natural (left) and arbitrary (right)
constraints - such a rate-limit (R) applied by the network operator.
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Figure 2: The difference between the operating points of a delay-
sensitive (A) and throughput-hungry (B) flow for a hypothetical
network.

These 3 constraints form a three-dimensional trade-off
space, as illustrated in Figure 1. Each of these constraints
can emerge naturally, or be applied explicitly by the network.
For example, packet drops can happen both as a result of nat-
ural buffer overflows or explicit drops by the AQM [19,41].
A network operator might also choose to limit flows to a rate
R that is lower than the link capacity C (see Figure 1).

2.1 What does a CCA do?

If we take this abstract view of the bottleneck link, the role of
a CCA is to operate at a point in this constrained space closest
to its desired (“natural”) operating point. We can imagine
there being a difference between how a throughput-hungry
and a delay-sensitive flow operates in the same network.

Consider a hypothetical network that constrains the
throughput and delay as illustrated in Figure 2. For the sake
of simplicity, we will focus on the throughput vs delay plane,
where the network allows a flow to have high throughput,
but not without a delay cost. In such a bottleneck link (with-
out other competing flows), a delay-sensitive flow might be
willing to give up some bandwidth and operate at point A to
reduce the end-to-end delay. On the other hand, a throughput-
hungry flow that can tolerate high delays would prefer to
operate at point B.

To illustrate how this works, we took 6 different CCAs
available in the Linux kernel and ran them individually
through a 50 Mbps bottleneck link with a 10 BDP buffer
and plotted their average throughput and delay to understand
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Figure 3: The throughput-delay trade-off space explored by differ-
ent CCAs in the Linux kernel.

their desired (“natural”) operating points (in the absence of
competing flows). As we can see from Figure 3a, these op-
erating points will vary depending on the CCA. CCAs like
CUBIC [22] and Reno [25] will attempt to fill the bottleneck
buffer to maximize throughput. Delay-sensitive CCAs like
Vegas [7] typically like to maintain low delay, even at the cost
of under-utilization. BBR [11] is somewhere in between, and
aims to operate at the Kleinrock point [29].

However, the desired operating points for different CCAs
are not always compatible with each other when they share
the same bottleneck link. To illustrate this, we ran the same
6 CCAs, but this time we allowed them to compete in a
300 Mbps link (fairshare 50 Mbps) with a 10-BDP bottle-
neck buffer (see Figure 3b). Under this new setting, the delay-
sensitive flows are starved and experience the largest displace-
ment from their desired operating point. The buffer-fillers fill
the bottleneck buffer and seize a larger than fair share of the
bottleneck bandwidth. None of this is surprising. Because of
how BBR interacts with buffer-fillers [39,53], BBR obtains
the largest share of the bottleneck bandwidth, but not without
suffering high delays.

2.2 How different CCAs compete

Since the bottleneck bandwidth is finite, competing flows are
forced to operate under a moving capacity constraint. We
can illustrate this for 2 flows in a FIFO queue by mirroring
the throughput vs delay trade-off plane of the second flow
and placing it below the first flow, as shown in Figure 4. In
this representation, the capacity constraint does not allow the
operating points of the two flows to be further from each other
than the link capacity C.

Naturally, the window can move depending on how ag-
gressively these flows compete with each other. If the two
competing flows are of the same CCA, we can expect them
to share the link capacity equally by symmetry and collab-
oratively achieve their desired throughput-delay trade-offs.
However, if the desired operating points of the two competing
flows are dissimilar, the more throughput-hungry flow will
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Figure 4: Since the bottleneck link capacity is limited, competing
flows can add a moving constraint to each other’s performance.

seize a larger share of the link capacity.

The incompatibility between different CCAs with different
desired throughput-delay trade-offs has been documented in
numerous CCA fairness measurement studies [39,53,56]. It
is well known that while most CCAs tend to be fair to other
flows that are also running the same CCA, they tend to not
play very well with other CCAs. We replicate some of these
well-known trends in the throughput-delay space in Figure 5.
In particular, we plot the displacement of a CCA’s achieved
operating point compared to its “natural” operating point.

Two flows of the same CCAs are able to compete fairly
between themselves and collaboratively achieve their desired
operating point, as shown in Figures 5a and 5b. However,
when CUBIC competes with Vegas, CUBIC, being the more
throughput hungry flow, fills the buffer and starves the com-
peting Vegas flow as shown in Figure 5c.

In some instances, when flows with different desired oper-
ating points compete, they can even mutually harm each other.
For example, as shown in Figure 5d, when CUBIC and BBR
share a bottleneck link, the throughput-hungry CUBIC flow
has its throughput reduced while the delay-sensitive BBR
flow suffers higher delay.

In summary, we can make two key observations from ob-
serving how CCAs compete:

1. CCAs with similar desired operating points can collabo-
ratively achieve their desired throughput-delay trade-offs
and coexist amicably (see Figures 5a and 5b).

2. CCAs with different operating points can often be incom-
patible, and even be mutually harmful (see Figures 5c
and 5d).

2.3 Case for Performance Isolation

Given our observations in §2.2, we need a way for CCAs with
different desired throughput-delay trade-offs to be treated
differently and independently of the other competing CCAs.
Unfortunately, classical AQMs are unable to do so, even if
they can sometimes help mitigate the effects of a heteroge-
neous mix of CCAs competing. For example, Codel [41] can
reduce the queuing delay a competing CUBIC flow inflicts
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Figure 5: Real world example of unfairness arising when ACUBIC, MIBBR, and ® Vegas compete in a FIFO queue.

on delay-sensitive Vegas flows. However, it still does not pre-
vent Vegas from being starved. Also, since Codel behaves
like a shallow buffer, it can result in under-utilization of the
bottleneck bandwidth. In other settings, AQMs can even exac-
erbate existing performance issues. For example, if we apply
RED [19] to the setting described in Figure 5d, BBR gains an
even higher share of the bottleneck bandwidth, while still in-
flicting high queuing delays on itself because it does not view
early packet drops by RED as a sign of congestion, unlike
CUBIC.

A naive solution to allow all CCAs to operate at their natu-
ral operating point is to have performance isolation. That is,
regardless of who they are competing with, they should be
able to achieve their desired throughput-delay trade-offs. This
can be achieved with Fair Queuing (FQ). Unfortunately, FQ
is not practical given the large number of flows in real-world
networks [31].

Several approximate fair queuing solutions that try to ap-
proximate what fair queuing does, scalably with only a few
queues, have since been proposed [12, 31,44, 60]. Unfortu-
nately, we will show in §6.1 that these solutions approximate
the wrong feature of FQ.

State-of-the-art approximate fair queuing solutions like
AFQ [44], AHAB [31], SFQ [12], and HCSFQ [60] are de-
signed to ensure each flow receives its fair share of the bottle-
neck bandwidth. However, this is not the same as performance
isolation, which is what we need: we want flows to achieve
their desired throughput delay trade-off regardless of what
CCAs they are competing with at the bottleneck. Under ap-
proximate FQ, it is still possible for flows to inflict delays,
suffer from excessive packet loss, and therefore impact each
other despite receiving their fairshare of the bandwidth.

Fortunately, we show that we do not need FQ or perfect
performance isolation to allow different CCAs to coexist.
Instead, we argue that all we need is a scalable way to achieve
approximate performance isolation between flows.

3 Approximate Performance Isolation

In this section, we define approximate performance isolation
and describe how it can be practically achieved by shuffling
flows in a small number of queues.

Fair Queuing (FQ) achieves performance isolation by as-
signing each flow its own queue, which allows each flow to
maintain whatever buffer-occupancy it desires. Approximate
performance isolation attempts to achieve performance sim-
ilar to FQ with a much smaller number of queues than the
number of flows. We note that performance isolation goes
beyond the idea of Congestion Control Algorithm Indepen-
dence (CCAI) [8], which only guarantees that a flow gets a
fixed throughput share regardless of who it competes with.

To better understand approximate performance isolation,
consider the example illustrated in Figure 6, where there are 5
flows, Fj_s, passing through a bottleneck, each with a differ-
ent desired operating point in the throughput-delay trade-off
space. For most efficient CCAs, we can expect these operating
points to lie on a Pareto throughput-delay frontier [54].

In other words, flows with different preferences can natu-
rally be ordered according to their preference for throughput
or delay. A FQ scheme would provide each flow with a differ-
ent queue, thereby ensuring performance isolation. However,
we can reduce the number of queues by placing flows that
want similar throughput-delay trade-offs together, as shown in
Figure 6. Here, flows F; and F>, and flows F4 and Fs are close
to each other on the throughput-delay plane. Following our
observations from §2.2, we can expect them to collaboratively
operate at operating points close to their desired operating
point. Since the displacement from the natural operating point
is small, we achieve approximate performance isolation.

To see how well this works with real CCAs, we re-ran the
experiment in Figure 3b with 6 flows with FQ (6 queues) com-
prising the following 6 CCAs: CUBIC, HTCP, Reno, BBR,
Vegas, and Veno. From Figure 7a, we note that CUBIC, HTCP,
Reno, BBR, Vegas, and Veno (in that order) provide a good
spread across the Pareto frontier under perfect performance
isolation.

Next, we repeated this experiment, but with only 3 FIFO
queues. The three buffer fillers (CUBIC, HTCP, and Reno)
shared one queue while the two delay-sensitive flows (Vegas
and Veno) shared a separate queue. BBR was placed in the
third queue on its own. We can see from Figure 7b that we can
achieve approximate performance isolation with just three
queues. In other words, the key insight is that to achieve
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approximate performance isolation, all we need is to group
flows that are close together on the Pareto frontier into the
same queue.

3.1 Inferring the desired operating point

To group flows based on their desired throughput-delay trade-
offs, we need a way to determine where they lie on the
throughput-delay frontier. While it is not possible to directly
determine the desired throughput-delay trade-offs for a flow,
we can infer the preference of a flow relative to other flows
sharing the same queue. This insight follows from the simple
observation that when multiple flows compete, the flow that
is the highest on the throughput-delay frontier is likely to also
be the most aggressive, and therefore will naturally obtain the
highest throughput share.

Ignoring Mice Flows. Our analysis of CAIDA traces [10]
(§6.3) revealed that 90% of the flows on the Internet are short-
lived (“mice”) flows. These flows will end before we can take
any action on them. Hence, it only makes sense to consider
only the long-lived flows that will last long enough for us
to take any action on them. Hence, we will only provide
performance isolation for flows that are not “mice” flows (or
flows that last more than a single flight of packets). In any case,
“mice” flows will likely care more about flow completion

times (FCT), instead of the throughput-delay trade-offs.

To filter out the “mice” flows, when a new flow is observed,
we route the first 10 packets to a high-priority mice queue.
We set the threshold to 10 packets because it is the default
TCP starting window size. After that, starting from a flow’s
second flight of packets, it gets assigned a queue.

Shuffling Flows Between Queues. In the same way that
the flows can be ordered along the throughput-delay frontier,
the set of queues that we use to group the flows is ordered.
When a new non-mice flow is added, we assign it to one of
these queues. Our key insight is a simple shuffling algorithm
that considers the bandwidth share of a flow in its assigned
queue, which we describe in Figure 8, is sufficient to group
similar flows together.

In particular, we can track the bytes transferred by each
flow in each queue at the end of fixed and regular intervals,
which we call a round. If we find that a flow in Q; has a
significantly larger bandwidth share than the other flows in
the same queue, it will get “promoted” to a higher queue Q; 4.
On the contrary, if we notices that a flow is being starved for
bandwidth in its current queue, it will be moved to a lower
queue number Q;_i. After a number of rounds, the flows will
be naturally be grouped into different queues according to
their level of aggression.

3.2 Implicit assumptions

While the shuffling mechanism in §3.1 seems straightforward,
it does make some implicit assumptions about how we ex-
pect different flows and CCAs to interact as a function of
their desired throughput-delay trade-offs. We discuss some of
these assumptions and their expected impact on the achieved
performance isolation.

Conflating fairness with similarity in desired
throughput-delay trade-offs. By attempting to infer
a flow’s desired throughput-delay trade-offs from their
sending behavior relative to the other flows in a shared queue,
we risk conflating inter-flow fairness with similar desired
throughput-delay trade-offs. In other words, our shuffling
algorithm does not distinguish between fairness between two
flows and two flows desiring to operate at similar operating
points. For most CCAs, this is not a huge issue because flows
that attempt to operate at similar operating points will tend to
be fair to each other.

However, this assumption may break when CUBIC and
BBR flows compete, when we have a shallow buffer. Previous
work has shown that in networks with buffers similar in size to
the BDP, CUBIC and BBR flows can obtain a fair share of the
bandwidth [39]. In this setting, our shuffling algorithm would
continue to place CUBIC and BBR in the same queue, because
they will compete fairly with each other. However, this would
be sub-optimal, since CUBIC and BBR have different desired
operating points — and BBR flows would do strictly better
if they were isolated in their own queues. This is a risk that
cannot be fully avoided by our current shuffling algorithm.



However, we can mitigate its impact we sizing the buffer
either smaller or larger than the BDP.

It is also possible for flows that want the exact same
throughput delay trade-offs to be unfair to each other because
they do not interact well. CCAs that have RTT unfairness can
suffer from this. Our shuffling algorithm can however address
this scenario by placing these flows in different queues.

Implied Transitivity of Aggression. Our shuffling strategy
also has the implied assumption that the aggressiveness of
a flow relative to other flows is transitive. That is, if flow
A is more aggressive than flow B when they compete, and
flow B is more aggressive than flow C when they compete,
then flow A must be more aggressive than flow C when they
compete. This would be true if a group of flows’ ordering on
the throughput-delay frontier (Figure 6) is the same if those
flows were ordered based on how aggressive they were when
they competed with each other.

However, for real-world CCAs, this is not always true. One
example is when CUBIC and BBR compete. Even though
BBR lies to the left of CUBIC on the throughput-delay fron-
tier, it can still be more aggressive than CUBIC when the
buffer is shallow. However, we argue that this does not matter,
because as long as flows get shuffled based on their relative
aggression to each other, flows with similar aggression will
still be eventually grouped into the same queue, and we will
achieve approximate performance isolation. In other words,
while it is possible for flows not to be sorted by their relative
order on the throughput-delay frontier across queues, they
will still be grouped with other flows with similar desired
operating points.

4 Santa’s Design

In this section, we describe Santa, our new AQM that achieves
approximate performance isolation. With approximate perfor-
mance isolation, we expect all the flows to operate at operating
points that are close to their desired operating point.

In Santa, we maintain one high-priority mice queue and K
Santa queues. Non-mice flows are randomly assigned to one
of K Santa queues of equal priority, that are ordered from Q;
to Q. The most aggressive flows are grouped into the highest
queue (Qy) and the least aggressive and most delay-sensitive
flows in the lowest queue (Q).

Atregular intervals, the AQM reviews its assignment policy
by assessing each flow’s average buffer occupancy compared
to the other flows in the same queue. If a flow’s average buffer
occupancy exceeds the average per-flow buffer occupancy in
that queue by some threshold, we take this as a hint that that
flow belongs in a higher queue with other more throughput-
hungry flows. Such flows are moved from Q; to Q;y.

A similar rule applies for flows with buffer occupancy less
than some threshold of the average per-flow buffer occupancy
in the queue. In such instances, we infer that the flow is less
aggressive and move it to a lower queue (Q;_1) that would

have a lower queuing delay by virtue of containing the less
aggressive flows.

The implementation Santa involves 3 key design choices:
(1) to which queue do we assign a new flow; (ii) how do we
decide which flows should be shuffled; and (iii) how do we
determine the bandwidth share to be allocated to each of the K
queues. An overview of Santa is shown in Figure 8. We shall
discuss these design choices in the following subsections.

4.1 Initial Queue Assignment

When we get a new flow, we must determine its initial queue
assignment. We perform this assignment in two stages.

Our analysis of CAIDA traces [10] (see Figure 9) reveals
that a surprisingly large proportion (=90%) of flows on the
Internet are mice flows. Since it is not possible to know if a
new flow is a mice flow or an elephant flow from the onset,
Santa treats the first 10 packets of each flow as a mice flow
and routes them through a special mice flow queue in the first
stage.

The mice flow queue has strict priority over all the other
Santa queues to minimize the FCT of the mice flows. Based
on our analysis of publicly available CAIDA traces [10], the
first 10 packets of all flows make up less than 10% of the
traffic volume. Therefore, we do not expect the strict prior-
ity mice flow queue to cause stalls under realistic Internet
scenarios.

Flows longer than 10 packets will be assigned to a Santa
queue. If an empty queue is available, a new flow will be
assigned to one; if all K queues contain live flows, a new non-
mice flow will be assigned to one of the K Santa queues at
random based on a weighted probability. In particular, likeli-
hood of a flow being assigned to a Santa queue is proportional
to the number of flows already assigned to that queue. We
argue that this assignment strategy has two main benefits.

Maximizing the likelihood of the correct initial assign-
ment. Ideally we want to assign a new flow to a queue that
corresponds to its level of aggression. Unfortunately, we can-
not determine the level of aggression until we assign a flow
into a queue with other flows. However, if we assume that
the distribution of CCAs is generally stable, then assigning
a new flow to a queue (group of flows) with a probability
proportional to the size of the group naturally maximizes the
likelihood of assigning a new flow to the right group. For
example, if 90% of flows are in Queue 1 and 10% of flows
are in Queue 2, with no additional information our best guess
is mapping a new flow to Queue 1 with probability 0.9 and to
Queue 2 with probability 0.1.

Improving Stability. When a new flow is assigned to a
queue with pre-existing flows, the new flow can disrupt the
pre-existing flows, especially if the new flow is very aggres-
sive. Hence, assigning a new flow to a queue with a large
number of pre-existing flow has a beneficial side effect that
it will likely have less impact that having it be assigned to
another queue with fewer flow. In Santa, we also allocate
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more bandwidth to queues with more flows (§4.3). In other
words, doing so will also mitigate the risk of overburdening a
queue with limited bandwidth assigned to it.

4.2 Flow Shuffling

Recall that our goal is to group different flows with other
flows that are nearby on the throughput-delay pareto frontier,
by observing how aggressively a flow behaves compared to
other flows in the same queue. Hence, once a flow is assigned
to a Santa queue, we monitor its average queue occupancy
in comparison to the other flows in the same queue. In our
prototype, we determine average queue occupancy every 10
seconds, but the duration is a configurable parameter.

After we determine the average buffer occupancy of a flow
over the last round, B;, we compare this value to the average
per-flow buffer occupancy of all the flows in that queue B.
If a flow is too aggressive (B; > rB), we move it to a higher
queue (from Q; to Q;+1). On ther other hand if it is not able
to compete with the other flows in that queue (B; < g), we
move to a lower queue with less aggressive flows (from Q; to
Oi-1).

Impact of shuffling thresholds. Effectively, Santa will
tolerate unfairness in a queue by up to a factor of 2. If we
allocate the bandwidth proportional to the number of flows in
each queue, each queue will maintain these bounds relative to
the fairshare bandwidth. Therefore, even across queues, the
worst case unfairness would be no larger than a factor of r2. If
we set r to something very small, it would cause frequent and

unstable shuffles between queues; if we set r to something
larger, we would have more infrequent shuffles, but we would
need to accept more unfairness among the flows. Santa sets
r =2, but r is clearly a tuneable parameter depending how
much unfairness we are willing to accept.

4.3 Bandwidth Allocation

In our prototype, each Santa queue is allocated bandwidth
proportional to the number of flows assigned to it. This band-
width assignment happens at the end of each round and re-
mains fixed for the duration of the round.

However, this bandwidth allocation policy be easily be
tweaked to provide the throughput-hungry flows with a larger
share of the throughput than delay-sensitive flows, if so de-
sired. In our implementation, our goal is to distribute band-
width relatively fairly (within the bounds stated in §4.2) be-
tween the competing flows.

S Prototype Implementation

To evaluate Santa’s performance in a real-world setting, and
to investigate the practical constraints of implementing Santa
on modern programmable switches, we prototype Santa with
950 lines of P4 code on an Intel Tofino programmable switch,
using bf-sde 9.11.2. To further reduce the latency for table
operations (add/modify), we implemented the control plane
(CP) in 1,250 lines of C++ code. Our source code will be
open-sourced once this paper is published.

Santa’s design is implemented in 3 stages: (i) record flow-
behaviour inside each queue at the end of each round, (ii)
make shuffling decisions based on the behaviour (and updat-
ing the bandwidth assignment), and (iii) update the queue
assignments for the next round. An overview of our prototype
implementation is shown in Figure 10.

5.1 Queue Assignment at the Ingress

We use a Count-min sketch (see discussion in §6.3) to main-
tain the per-flow packet count for new flows in each round.
All the packets for a flow before the count exceeds 10 are
assigned a queue with a strict priority over all other queues.
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Figure 10: Overview of Santa prototype implementation.

During each round, we need to handle packets from both
new flows and the ones observed in the last round. The latter
would have an entry added to the Q-Assign MAT (Match
Action Table) by the CP and are assigned a queue by matching
on their five-tuple (more precisely, the 32-bit hashes of the
five-tuple). These assignments are updated after every round
based on the queue behaviour in the previous round.

Each new non-mice flow is assigned a Santa queue ran-
domly weighted by the number of flows present in a queue
in the previous round (or implicitly in proportion to the band-
width allocated to each queue, as discussed in §5.3).

This weighted-random initialization is implemented using
a MAT with a range match, with the ranges spread out in
proportion to the weights. This initialization is done for the
first packet corresponding to a flow and is stored in a register
(indexed by the hash of the five-tuple) to maintain a consistent
assignment for the flow for that round. When the round ends,
this assignment gets added as an entry to the Q-Assign table.

5.2 Recording queue behaviour at the Egress

To observe the queue behaviour of a flow compared to the
other flows in the same queue, we record the queue delays
corresponding to a flow across a Santa round. We use 2-level
registers with 64k entries each, with each entry being a 32-bit
pair containing the flow-fingerprint (to help detect collision)
and the corresponding cumulative queue delay for the flow
(in ms). We can record the cumulative delays for each flow up
to 1k seconds without overflowing at a granularity of 256 ns.

If we have a collision (i.e., a different fingerprint present
at the index computed for a flow), the entry is pushed into
the second level register. Each of these registers with 64k en-
tries is divided into segments based on the number of queues
configured by Santa (i.e., say 4 segments of 16k entries cor-
responding to 4 queues configured for Santa). This is done
to obtain the queue corresponding to a particular flow while
fetching the register entries in the control plane.

5.3 Shuffling and bandwidth allocation at the
control plane

We fetch the cumulative queue delay (and correspondingly
the relative queue occupancy) for all flows corresponding to
each queue. For each queue, we shuffle the flows violating
the defined throughput bounds (see §4.2). First, starting from
Q1 (also correspondingly the mildest queue), we move all the
flows whose cumulative queue delay exceeds the bandwidth
threshold to the more aggressive queue (Q;1). Then, among
the remaining flows, we move all the flows with the cumula-
tive queue delay less than the threshold to a less aggressive
queue (Q;—1). Furthermore, based on this updated assignment,
we redistribute the bandwidth weighted by the number of
flows in each queue. We use a dynamic weighted round-robin
mechanism at the switch traffic manager to implement this.

6 Evaluation

In this section, we evaluate how well Santa can achieve ap-
proximate performance isolation and compare it to other
common AQMs. Since Santa aims to approximate the
performance isolation achieved by Fair queuing (FQ), we
also compare it to state-of-the-art approximate FQ schemes
AHAB [31], SFQ [12], and Cebinae [57].

We note that since performance isolation is not something
that other AQMs have explicitly been designed for, the com-
parison with Santa would not be entirely fair. Nevertheless,
our current version of Santa is also not fully optimized. Our
implementation is merely a proof-of-concept prototype, and
the goal is to observe how our approach compares with exist-
ing approximate FQ algorithms when it comes to performance
isolation.

We also investigate how Santa’s performance is affected
by the number of available queues, and how well Santa can
straddle the trade-off space between a single FIFO queue and
perfect FQ. Finally, we discuss the scalability of our current
implementation of Santa in P4 on an Intel Tofino switch.
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Figure 11: 9 long-running flows (3 each of ACUBIC, MBBR, and ®Vegas) competing in a FIFO, Codel [41], Cebinae [57], AHAB [31],

SFQ [12], Santa, and FQ bottleneck.

6.1 How well can Santa provide approximate
performance isolation?

To evaluate how closely Santa can achieve performance iso-
lation compared to other AQMs, we measure the throughput
delay trade-offs for flows under Santa, and compare the ob-
served throughput-delay trade-offs, with that for other AQMs
(FIFO, Codel [41], Cebinae [57], AHAB [31], SFQ [12], FQ).

To do so, we launch 9 flows (3 each of CUBIC, BBR, and
Vegas) through a fixed capacity 450 Mbps bottleneck link,
with a 10 BDP buffer. All 9 flows are launched at the same
time and have a minimum RTT of 20 ms. The flows are run
concurrently for 1 minute. For FQ, each flow gets its own
queue with the fairshare (50 Mbps) bottleneck bandwidth. We
configure Santa to run with 4 queues: 3 shuffling queues and
a mice queue. We plot the results in Figure 11.

Since we want to achieve performance isolation, we ef-
fectively want to minimize the displacement between the
achieved operating point for a CCA from its desired operating
point when competing with the other flows. Like before, FIFO
(Figure 1 1a) does not perform well. Vegas flows are starved
for bandwidth, and BBR flows suffer from high delays. Codel
(Figure 11b) does not fare much better as well. While all flows
maintain low delays, loss-sensitive CUBIC and Vegas flows
have low throughputs, since Codel effectively behaves like a
shallow buffer. BBR, which is mostly loss-agnostic, gains a
disproportionately large share of the bottleneck bandwidth.

Existing state-of-the-art approximate FQ AQMs do not fare
much better. Cebinae [57] aims for max-min fairness and ap-

proximates FQ by taxing bottlenecked flows based on their
past bandwidth shares. While this works well for maintain-
ing fairness between CUBIC and BBR flows, Cebinae often
wrongly infers Vegas flows as non-bottlenecked flows, result-
ing in them receiving less than their fair share (see Figure 11c).
Since Cebinae is only concerned about bandwidth fairness
and does not try to isolate different flows, both BBR and Ve-
gas suffer from large queuing delays. Other approximate fair
queuing schemes like AHAB [31] (Figure 11d) and SFQ [12]
(Figure 11e) suffer similarly. We can see from Figure 11f
that Santa is able to achieve almost the same performance
isolation as FQ (Figure 11g).

Packet Reordering. Since Santa shuffles flows across
queues, it can be susceptible to packet reordering. These can
manifest as significant performance hits if loss-based CCAs
perceive this reordering as packet losses and slow down in
response to them. In our experiments, we do observe occa-
sional packet reordering between rounds in Sanfa. However,
thanks to the standardization of RACK-TLP [13], the TCP
stack is pretty robust to these packet reordering and seldom
considers them to be legitimate packet losses. Moreover, these
reordering events become more infrequent as the flows’ queue
assignments converge and they stop shuffling.

Convergence time for queue assignments. In practice, we
observed that the convergence time increases with the number
of queues. In the worst case, a flow can take up to K rounds to
converge to a queue assignment, where K is the total number
of Santa queues. In the experiment described in Figure 1 1f,
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Figure 12: Santa’s performance with larger number of flows (90
flows, 30 each of ACUBIC, MBBR, and ® Vegas).

the flows converge to an assignment within 2 to 3 rounds
across multiple trials. For higher flow churn networks, this
convergence time can be drastically reduced by setting shorter
round intervals.

Scaling to larger number of flows. To understand the im-
pact of a larger number of flows on performance isolation,
we launched 90 flows, with 30 flows each of CUBIC, BBR,
and Vegas for Santa with 3 queues. The total bottleneck band-
width was set to 1.8 Gbps, which works out to be a fair share
rate of 20 Mbps. The flows have a minimum RTT of 20 ms
and were run for 1 minute. We plot the results in Figure 12a.

While all flows approximately receive their fair share of
bandwidth and Vegas flows saw the lowest delays. BBR flows
did not operate at their ideal Kleinrock point, but saw higher
than expected delays. On investigation, we found that this
was because the BBR flows were taking longer than expected
to converge into their own separate queues, and spent most of
the time competing with other CUBIC flows. However, over
a longer time horizon, the average delay for the BBR flows
would reduce as they spent more time in their own queues.
This behavior is consistent even when we run Santa with more
queues (Figure 12b).

We note here that we did not see this behavior earlier in
Figure 11f. This is because we weren’t able to set 10 BDP
buffers for the 90-flow experiment, like we did for the experi-
ment in Figure 11, due to buffer capacity constraints for a port
on the switch. For the 90-flow experiment, the buffer size was
about 2 BDP. CUBIC and BBR are known to be a lot fairer
to each other at these smaller buffer sizes [39]. This suggests
that buffer sizing is crucial for making Santa work optimally.

6.2 Impact of Number of Santa Queues

Given how Santa aims to approximate performance isolation,
we can think of Santa occupying a trade-off space between
FIFO and FQ in the throughput-delay plane. To demonstrate
this, we ran 6 flows (2 each of CUBIC, BBR, and Vegas) for
Santa with different number of queues. As we can see from
Figure 13, Santa with a different number of Santa queues
straddles the continuum between FIFO and FQ, when it comes
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to performance isolation. Santa-1 functions equivalent to a
FIFO queue, and Santa-6 is approximately equivalent to FQ.

6.3 Scalability

We prototype Santa with an eye on scalability. Maintaining
Internet-scale per-flow state in the dataplane is generally not
feasible [31]. However, by using probabilistic data structures
(count-min sketch [15]) to maintain flow packet counts, read-
write copies, frequent entry flushing, and decaying queue
assignment entries, we found that it is indeed possible. To
further reduce the latency for table-entry add/modify opera-
tions, we implement the control plane in C++. We evaluate the
expected performance of these data structures over internet-
scale (CAIDA [10]) traces using simulations.

Count-Min Sketch. Given the memory constraints on
the switch and our principle of analyzing flows only after
their first slow start window (10 packets), we use a Count-
Min Sketch (CMS [15]) for recording the number of packets
for a new flow. We use an 8-bit wide 4-column CMS (in-
dexed with 2 CRC-32 hashes) to maintain this count. Using
4 columns, we achieve negligible hash collisions on CAIDA
traces (around 600k flows) without flushing for up to 10 sec-
onds. The resource utilization using up to 4 columns is shown
in Table 1. Given the flow size distribution across 60 mins of
CAIDA traces (see Figure 9), we observed that about 90% of
the flows send around 10 packets (across the 60 mins), thus
our CMS can successfully filter out a vast majority of mice
flows.

Q-Delay Structure. Considering our CMS can be expected
to filter out 90% of the flows, we can easily scale using our
original design, i.e., by storing the cumulative queue delays
using 2-level registers containing 64k entries each. We store
the flow fingerprint and its corresponding cumulative queue
delay (by adding the individual queue delay of each packet).

Given we use 32 bits to store the delays, we need to flush
and refresh these registers every second so that the cumu-
lative delay values do not overflow even with deep buffers
(see Figure 14). So we maintain 2 copies (read & write) of
the 2-level registers, and write to one copy while the delays
from the other are being read by the control plane. With this
periodic swapping, the round size no longer directly impacts
the collisions. Furthermore, if we flush our CMS only after
each round, the number of collisions increases with round
size.

Q-Assign Table: Not removing stale entries actively from
the queue assignment table results in collisions (and incorrect
assignments) at scale. To mitigate this, we use entry pruning
by maintaining an idle entry timeout of 10 seconds for the
table, i.e. any entry not hit in that duration is automatically
deleted. To demonstrate its effectiveness, we simulated the
queue assignment for the CAIDA traces with an identical table
size (90k entries) and hash function as our P4 implementation.
As shown in Figure 15, we observe a significant reduction in
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Table 1: Hardware resource consumption on the Intel Tofino for

different CMS configs
Resource santa_lcol santa_2col santa_3col santa_d4col
SRAM 22.1% 25.5% 29% 32.4%
Hash Bits 6.3% 7.4% 7.7% 8.1%
Hash Dist. Unit 19.4% 23.6% 25% 26.4%
VLIW Ins. 4.9% 5.2% 5.7% 6.3%
Collisions (%)
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Figure 14: Percentage Q-Delay collisions for different Santa
round durations (assuming CMS flushes at the end of the round), on
CAIDA traces using 4 queues.

collisions for longer Santa rounds.

7 Related Work

The growing CCA heterogeneity on the Internet and its impact
on flow-level performance has been the focus of numerous
recent studies, particularly those exploring its implications
for fairness [49,55] and buffer sizing [28,32]. A major con-
cern is that newer CCAs, like BBR, may lead to unfairness
when competing with legacy CUBIC flows [33,52]. The in-
crease in CCA diversity and emerging variations [36], and its
apparent inevitability [39], has also spurred discussions on
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Figure 15: Q-Assign table’s memory footprint for different Santa
round durations on CAIDA traces.

the co-existence of flows on the Internet [51] and CCA stan-
dardization [23]. Others also highlight the challenges faced
by delay-based CCAs in highly competitive and heteroge-
neous network environments [5,21]. To address those issues,
optimizations specifically designed for senders have been pro-
posed to improve fairness in bandwidth sharing [6, 34,40,43].

While end-host CCA optimizations can improve fairness to
some extent, they are fundamentally limited in scope. When
a flow experiences unfair bandwidth allocation, its only avail-
able strategy at the transport layer is to increase its sending
rate aggressively. However, this can lead to severe congestion
in the network rather than achieving true fairness. To ad-
dress this, network-assisted approaches have been explored to
regulate overly aggressive flows. DCTCP [4], DCQCN [62],
and L4S [24] use ECN signals, while HPCC [30] and Pow-
erTCP [2] use in-network telemetry (INT) as in-network sig-
nals. DiffServ [] assigns different priority levels to different
flows but depends on the marks given by the endpoints. The
network signaling methods are hampered by the fact that users



on the internet may not always comply with the recommended
actions.

Active Queue Management. A more direct approach to
fairness involves flow isolation, where each flow or user is
allocated a separate queue to minimize interference. Fair queu-
ing (FQ [16]) ensures flow-level isolation, but switches today
have a limited number of queues available. Thus there is a
body of work that attempts to approximate fair queuing us-
ing a few queues: priority-based approximations (PIFO [47],
SP-PIFO [3]) assign ranks to packets for scheduling and are
less flexible; AIFO [59] uses a single queue and admission
control; PIEO [46] uses programmable NICs to offload the
scheduling; AFQ [44], PCQ [45], and HCSFQ [60] use mul-
tiple queues and specialized data structures to emulate fair
queuing.

The emergence of programmable data planes has enabled
practical implementation for AQMs at scale. Traditional
AQMs mainly target only the loss-based CCAs by either per-
forming early congestion signaling (RED [18], ARED [17])
or preventing the bufferbloat problem (CoDel [41], PIE [42]).
Nimble [48] supports rate-limiting for fixed rates set by the
control plane. Flowtamer [35] aims to alter TCP receive win-
dow to tame the aggression of the flows, but has scalability
concerns and doesn’t work with QUIC traffic. Cebinae [58]
proposes a low-cost alternative on commodity programmable
switches that approximates fair queuing on a large scale by
taxing the heavy flows. P4air [49] attempts to provide isola-
tion to different CCAs, but it requires maintaining extensive
per-flow data, including queue length and timestamps. P4air
proactively drops packets for each flow to gauge its response
to packet loss, irrespective of congestion. Moreover, when
the flow’s group changes, P4air recirculates all packets of the
flow, potentially impacting actual bandwidth.

Beyond bandwidth fairness. Almost all of the methods
mentioned above focus on bandwidth equalization for fair-
ness, but a more nuanced understanding of fairness is required
beyond simply dividing bandwidth equally. Brown et al. chal-
lenge the effectiveness of TCP-friendliness in improving the
CCA ecosystem [9]. They propose an alternative bandwidth
allocation approach aligned with commercial agreements [8].
Zapletal et al. argued that users primarily care about flow
completion time (FCT) rather than strict bandwidth fairness,
suggesting that an imbalanced bandwidth allocation does not
necessarily degrade user experiences [61].

Moreover, Santa is closely related to the Network Util-
ity Maximization (NUM) paradigm [27], which formulates
the network as a system at equilibrium with the objective of
maximizing the sum of utilities across all flows. However, a
fundamental challenge in applying NUM to real-world net-
works is that the utility functions of CCAs (often depending
on parameters such as delay and throughput) are typically
unknown. Unlike traditional fairness mechanisms that impose
rigid constraints on delay and throughput, Santa advocates for
simple flow isolation while preserving optimization flexibility,
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aiming to place each flow within an appropriate working zone
rather than strictly enforcing predefined performance targets.

Fair Queuing. To achieve fairness between flows, fair
queuing (FQ [16]) isolates each flow by queuing it individu-
ally, thus reducing interference between them. In theory, this
works perfectly for isolating flows, but switches today have
a limited number of queues available. Thus there is a body
of work that attempts to approximate fair queuing using a
few queues: priority-based approximations (PIFO [47], SP-
PIFO [3]) assign ranks to packets for scheduling and are less
flexible; AIFO [59] uses a single queue and admission control;
PIEO [46] uses programmable NICs to offload the scheduling;
AFQ [44], PCQ [45], and HCSFQ [60] use multiple queues
and specialized data structures to emulate fair queuing. How-
ever, these algorithms employ a uniform handling approach
and do not differentiate between the different types of CCAs
and their goals. The fundamental issue with these approaches
is that they intend to approximate the incorrect aspect of fair
queuing; they aim to achieve better bandwidth fairness instead
of isolation.

8 Discussion

In this paper, Santa presents a new approximate performance
isolation-driven paradigm for AQMs. This presents several
avenues for further discussion.

Quantifying aggression. Aggression refers to the tendency
of a flow to dominate shared resources at the expense of com-
peting flows—through fast ramp-ups, insensitivity to loss or
delay, or by refusing to back off under congestion. Santa
uses the average buffer occupancy as a metric to quantify the
relative aggression of a flow. While this approach is straight-
forward, the metric can be influenced by competing flows and
varying network environments. It remains as future work to
investigate whether there exists a simple yet robust metric for
quantifying aggression that remains consistent under diverse
network conditions.

Handling bad actors. Protocols like TCP Brutal [1], which
aggressively seize bandwidth with little regard for fairness,
can significantly harm well-behaved flows. Santa can be ex-
tended to isolate such bad actors in a “hell queue,” thereby
limiting their impact on others. This is a concrete direction for
network-layer mitigation [50] of selfish behavior by imposing
certain penalties.

Santa’s impact on CCA design. Currently, CCA innova-
tion is often hampered by the need to remain competitive.
Many CCAs switch to a CUBIC-like mode once they detect
buffer fillers [6,21]. Since Santa will allow CCAs with dif-
ferent throughput-delay preferences to co-exist, CCAs do not
need to ensure that they are competitive with CUBIC. Instead,
Santa allows a new CCA to optimize for its own desired
throughput-delay target. The opens up the possiblity of new
algorithms. For example, a new version of BBR that achieves
even lower delay could potentially become practically deploy-



able on the Internet.

Rethinking fairness. Traditional notions of fairness, most
notably TCP-friendliness, have long been used to evaluate
CCAs. However, in today’s increasingly heterogeneous Inter-
net, these definitions fall short of capturing the complexity of
modern traffic dynamics. The recent proposals [8,51] have
been arguing for a shift from strict rate-based fairness toward
cost-aware or behavior-aware definitions, which may better
reflect the realities of diverse protocol behaviors and appli-
cation requirements. Approximate performance isolation is
arguably also a new notion of fairness.

9 Conclusion

Our current implementation of Santa is a proof-of-concept
that shows it is possible to achieve approximate performance
isolation using a handful of queues and a simple shuffling
strategy. Santa explores a new design space for AQMs that
can allow different CCAs to co-exist and achieve good per-
formance trade-offs. Santa is open-source and available on
GitHub at github.com/anonymous/Santa.
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